问题描述
现有村落间道路的统计数据表中,列出了有可能建设成标准公路的若干条道路的成本,求使每个村落都有公路连通所需要的最低成本。
输入格式:
输入数据包括城镇数目正整数N(≤1000)和候选道路数目M(≤3N);随后的M行对应M条道路,每行给出3个正整数,分别是该条道路直接连通的两个城镇的编号以及该道路改建的预算成本。为简单起见,城镇从1到N编号。
输出格式:
输出村村通需要的最低成本。如果输入数据不足以保证畅通,则输出−1,表示需要建设更多公路。
输入样例:
6 15
1 2 5
1 3 3
1 4 7
1 5 4
1 6 2
2 3 4
2 4 6
2 5 2
2 6 6
3 4 6
3 5 1
3 6 1
4 5 10
4 6 8
5 6 3
输出样例:
12
代码实现
#include<bits/stdc++.h>
#define N 1001
/*************************************
最小生成树问题
采用Prim算法
*************************************/
int road[N][N]; //城镇之间的道路成本
int dist[N]; //城镇到生成树的花费
int MinCost(int n)
{
int cost = 0;
int source = 1; //开始的城镇
for(int i=1; i<=n; ++i)
dist[i] = road[source][i];
dist[source] = 0;
for(int i=1; i<n; ++i) {
//寻找dist中的最小值对应的城镇
int min_cost = INT_MAX;
int min_city = -1;
for(int j=1; j<=n; ++j)
if(dist[j] && (dist[j] < min_cost)) {
min_cost = dist[j];
min_city = j;
}
//存在某个城镇与任意城镇之间不连通
if(min_city == -1)
return -1;
cost += dist[min_city];
dist[min_city] = 0;
for(int j=1; j<=n; ++j)
if( dist[j] && (road[min_city][j]<dist[j]) )
dist[j] = road[min_city][j];
}
//判断最小生成树是否包含所有城镇
int city_num = 0;
for(int i=1; i<=n; ++i)
if(dist[i] == 0)
++city_num;
if(city_num == n)
return cost;
else
return -1;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
//初始化
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
if(i == j) road[i][j] = 0;
else road[i][j] = INT_MAX;
//输入道路成本
for(int i=0; i<m; ++i) {
int v1, v2, cost;
scanf("%d%d%d", &v1, &v2, &cost);
road[v1][v2] = cost;
road[v2][v1] = cost;
}
printf("%d\n", MinCost(n));
return 0;
}