MATH
Whomio
Some things are not immediately understood, but need a brewing process.
展开
-
模重复平方运算
#include<stdio.h>//模重复平方运算int qe2(int x,int y,int m){ int a=1,b=x,n=y; while(n){ if(n&1) a=(a*b)%m; b=(b*b)%m; n>>=1; }原创 2018-07-26 16:20:02 · 1290 阅读 · 0 评论 -
有限简单连分数求解
有限连分数求解的基本思路: 设分数fn,整数部分z,非整数部分r,[x]表示不超过x的最大整数。 (0)令z0=[fn],r0=fn-z,0<= r< z。 (1)若r0=0,则终止。否则,令z1=[1/r0],r1=1/r0-z1。 (2)若r1=0,则终止。否则,令z2=[1/r1],r2=1/r1-z2。 (3)如此循环下去,直至...原创 2017-12-07 22:03:29 · 2213 阅读 · 1 评论 -
b进制运算之一--和
求两个任意进制(b)数之和的基本思路:1.从两个数的最低位开始,直至检索完一个较小的数,且每位相加,存至字符串中。2.较大数的多余部分直接拼接在上述字符串中。3.需要注意的是:定义一个数组,用来存储此时两个数相加是否大于b。下面是求和函数//b进制之和string BigNumSum(string a, string b,int numb){ int len_a = a.leng原创 2017-11-19 23:35:16 · 873 阅读 · 0 评论 -
模为奇素数的原根求解
此问题的基本思路: 定理:设p为奇素数,p-1的所有不同素因数q1,¨¨¨qs,则g是模p原根的充要条件是 g的(p-1)/qi次幂(/≡)1(mod p),i=1,¨¨¨s (1)求任一原根g ①求p-1的素因数q1,¨¨¨qs ②求得e=(p-1)/q, q=q1,¨¨¨qs ③判断g的e次幂模p是否同余1,g为2,3,4,5,¨¨¨等,逐个原创 2017-11-11 11:31:29 · 3086 阅读 · 0 评论