【模板】SPFA 判断负环

本文介绍了一种使用SPFA算法来判断图中是否存在负权回路的方法。通过记录每个节点入队次数,若某节点入队次数超过节点总数,则说明存在负环。代码示例展示了如何实现这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


用SPFA判断一下每个点入队的次数,如果大于点数,就是有负环。


/*
	狗贼,看我代码请自动转账一元 
*/  
//#include<bits/stdc++.h>
/*#include <iostream>
#include <stdlib.h>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <iomanip>
//#pragma GCC optimize(2)
#include<time.h>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxn 2005
#define inf 1e18
#define eps 0.00001
typedef long long ll;
const ll mod = 1e9+7;
const double pi = acos(-1);

ll T,n,m;

void slove()
{
	
		ll num[maxn],dis[maxn];
		vector< pair<ll,ll> >vis[maxn];
		bool flag[maxn];
		
		cin >> n >> m;
		
		for(ll i = 1; i <= m; i++)
		{
			ll a,b,c;
			cin >> a >> b >> c;
			if(c < 0)
				vis[a].push_back( make_pair<ll,ll>(b,c) );
			else
			{
				
				vis[a].push_back( make_pair<ll,ll>(b,c) );
				vis[b].push_back( make_pair<ll,ll>(a,c) );
				
			}
			
		}
	
	
	for(ll i = 1; i <= n; i++)
	{
		dis[i] = inf;
		flag[i] = 0;
		num[i] = 0;
	}
		

	queue<ll>A;
	A.push(1);
	flag[1] = 1;
	dis[1] = 0;
	num[1]++;
	
	while( !A.empty() )
	{	
		ll now = A.front();
		A.pop();
		flag[now] = 0;
		
		for(ll i = 0; i < vis[now].size(); i++)
		{
			if( dis[ vis[now][i].first ] > dis[ now ] + vis[now][i].second  )
			{
				
				dis[ vis[now][i].first ] = dis[ now ] + vis[now][i].second;
				
				if( flag[ vis[now][i].first ] == 0)
				{
					flag[ vis[now][i].first ] == 1;
					A.push( vis[now][i].first );
					num[ vis[now][i].first ] ++;
				}
				
				if(num[ now ] > n)
				{
					cout << "YE5" << endl;
					return ;
				}
				
			}
			
		}
			
	}
	 	
	cout << "N0" << endl;
	return ;
}

int main()
{
    //srand((ll)time(0));
	ios::sync_with_stdio;
	cin.tie(0),cout.tie(0);
	
	cin >> T;
	
	while(T--)
	{
		
		slove();
		
	}

    return 0;
}*/
//fabs(t1-t2) >= eps

 

### SPFA算法简介 SPFA(Shortest Path Faster Algorithm)是一种用于求解单源最短路径的改进型Bellman-Ford算法。它通过队列优化来减少冗余计算,从而提高效率。对于差分约束系统的求解,可以通过构建图模型并运行SPFA算法找到满足条件的一组解。 以下是基于Python实现的一个标准SPFA算法模板: ```python from collections import deque def spfa(n, edges, start_node): """ :param n: 节点数量 :param edges: 边列表 [(u, v, w)] 表示从 u 到 v 的边权为 w :param start_node: 起始节点编号 :return: dist 数组表示从起始节点到其他各节点的距离;如果存在,则返回 None """ INF = float('inf') dist = [INF] * (n + 1) # 初始化距离数组 in_queue = [False] * (n + 1) # 记录节点是否在队列中 cnt = [0] * (n + 1) # 统计进入队列次数,用于检测 queue = deque() dist[start_node] = 0 # 设置起点距离为0 queue.append(start_node) in_queue[start_node] = True while queue: node = queue.popleft() in_queue[node] = False for neighbor, weight in edges.get(node, []): # 遍历当前节点的所有邻居 if dist[neighbor] > dist[node] + weight: # 松弛操作 dist[neighbor] = dist[node] + weight if not in_queue[neighbor]: queue.append(neighbor) in_queue[neighbor] = True cnt[neighbor] += 1 if cnt[neighbor] >= n: # 如果某个节点入队超过n次,则说明存在 return None # 存在,无法继续计算 return dist ``` 上述代码实现了SPFA的核心逻辑,并能够判断是否存在权回路[^1]。当`cnt[neighbor] >= n`时,意味着该节点被访问了过多次数,因此可以断定图中存在权循。 ### 差分约束系统中的应用 为了利用SPFA解决差分约束问题,通常需要将一组线性不等式转化为有向加权图上的最短路径问题。具体而言,给定一系列形如 \(x_i - x_j \leq c_k\) 的不等式,可将其转换成对应的图结构并通过SPFA算法验证其可行性或寻找最优解集。 #### 特殊情况处理——恒等关系 针对特定形式的关系表达式\(xi = k\),可以直接初始化对应顶点的距离值而无需额外考虑松弛过程的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值