PCA的一些理解

PCA(主成分分析)是一种常见的特征降维方法,主要用来解决高维数据中的冗余和相关性问题。文章介绍了PCA的背景,包括特征冗余带来的问题,如计算成本增加和过拟合风险,并解释了降维的本质——找到最大线性无关组。PCA通过线性组合原始特征,构造新特征,最大化样本方差,使得新特征间互不相关。在实际操作中,PCA通过选取累计方差占比高的特征向量构建变换矩阵,将数据映射到低维空间,以达到降维目的。在训练和测试过程中,PCA都需要保持一致性,确保数据在同一特征空间中处理。
摘要由CSDN通过智能技术生成
最近由于用Haar特征+Adaboost训练分类器时遇到了Haar特征太多导致计算特征空间时内存不足的问题,便想找一些特征降维的方法来缩减特征空间,在网上找了好久也没有找到针对Haar特征有什么有效的降维方法。于是又抱起周志华那本《机器学习》把PCA部分重新翻了一遍,虽然最后发现PCA对于我的问题帮助不大(因为PCA是无监督的,在降维过程中没有利用类别信息,导致降维过后样本反而更难以区分了。这又引出了另外一种降维方法LDA。当然,这都是后话),但还是收获颇多,对于特征降维也有了更深的一些认识。
既然PCA是用于降维的,那么我们首先要明确,为什么要降维呢?结合我的经验来看,主要有这么几点:1.在原始特征空间中,有些特征之间可能存在很大的相关性-多重共线性,导致这些特征相互之间是冗余的,降维可以减少这种冗余性,降低运算成本。例如我统计一个班某次月考的分数,共4个特征,分别是语数外分数和总分,那么毫无疑问总分是完全多余的一个特征,因为它可以由语数外这三个分数相加得出,我们完全可以将其抛弃而对原问题没有丝毫影响,这就是特征间的相关性。另外, 多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯;2.高维空间具有稀疏性,一维正态分布有
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值