zs_id
码龄3年
关注
提问 私信
  • 博客:11,516
    11,516
    总访问量
  • 8
    原创
  • 1,660,511
    排名
  • 46
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:福建省
  • 加入CSDN时间: 2021-11-01
博客简介:

zs_id的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    2
    当前总分
    125
    当月
    3
个人成就
  • 获得78次点赞
  • 内容获得15次评论
  • 获得114次收藏
  • 代码片获得480次分享
创作历程
  • 8篇
    2023年
成就勋章
TA的专栏
  • 机器学习
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PCA(主成分分析)

PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。∑是一个m∗n的矩阵,∑除了对角线其它元素都为0,对角线上的元素称为奇异值。VT是V的转置矩阵,是一个n∗n的矩阵,它里面的正交向量被称为右奇异值向量。通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值和特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。其中,Q是矩阵A的特征向量组成的矩阵,Σ则是一个对角阵,对角线上的元素就是特征值。
原创
发布博客 2023.12.31 ·
6442 阅读 ·
27 点赞 ·
1 评论 ·
37 收藏

机器学习——支持向量机(SVM)

鸢尾花数据集是一个经典数据集,在统计学习和机器学习领域都经常被用作例子。数据集内包含 3 类共 150 个样本,每类各 50 个样本,每条样本都有 4 个特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,可以通过这 4 个特征预测鸢尾花属于(iris-setosa, iris-versicolour, iris-virginica)中的哪个品种。花萼长度花萼宽度花瓣长度花瓣宽度5.13.31.70.55.02.33.31.06.42.85.62.2品种(标签)0(山鸢尾)
原创
发布博客 2023.12.18 ·
1105 阅读 ·
21 点赞 ·
1 评论 ·
22 收藏

Logistic回归

现有一些数据点,我们用 一条直线对这些点进行拟合,该线称为最佳拟合直线,这个拟合过程就称作回归。利用Logistic 回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。这里的 “回归”一词源于最佳拟合,表示要找到最佳拟合参数集。训练分类器时的做法就是寻找最佳拟合参数,使用的是最优化算法。logistic回归:Logistic回归是一种监督学习算法,适用于解决二分类问题。其基本思想是通过sigmoid函数将输入特征映射到[0, 1]的范围,表示事件发生的概率。
原创
发布博客 2023.12.04 ·
1018 阅读 ·
23 点赞 ·
0 评论 ·
22 收藏

朴素贝叶斯应用——垃圾邮件过滤

简单高效,易于理解实现。对小规模数据表现良好,适用于多分类问题。假设特征独立, 朴素贝叶斯算法的一个主要假设是所有特征都是相互独立的。在现实世界的某些情况下,这个假设可能并不成立,从而影响了分类的准确性。尽管朴素贝叶斯有其局限性,但在许多实际应用中,它仍然是一个简单而有效的分类算法。根据具体问题的性质,以及数据的特点,选择合适的分类算法非常重要。OVER五、参阅【精选】【机器学习实战】朴素贝叶斯应用之垃圾邮件过滤_基于朴素贝叶斯的垃圾邮件过滤-CSDN博客朴素贝叶斯_百度百科 (baidu.com)
原创
发布博客 2023.11.20 ·
1516 阅读 ·
3 点赞 ·
10 评论 ·
24 收藏

机器学习——决策树

决策树,在这次实验中。了解了一些关于决策树的知识,如决策树的各种划分标准,决策树的优缺点以及怎样去构建一个决策树等等。对于新东西的接受消化还是要花很大力气的,虽然效果并不是那么好。六、参考【精选】机器学习 —— 决策树_决策树流程-CSDN博客【机器学习实战】3、决策树_机器学习实战决策树-CSDN博客决策树_百度百科 (baidu.com)
原创
发布博客 2023.11.06 ·
411 阅读 ·
1 点赞 ·
0 评论 ·
4 收藏

机器学习:PR曲线和ROC曲线

在机器学习中,我们经常使用PR曲线(Precision-Recall Curve)和ROC曲线(Receiver Operating Characteristic Curve)来评估模型的性能。这两种曲线都可以提供有关分类器性能的重要信息。其实PR曲线和ROC曲线的选择还是要根据实际情况做出选择,当正负样本比例相近时,ROC曲线通常能够给出稳健的性能评估,。当正负样本比例严重不平衡时,PR曲线通常更为实用。
原创
发布博客 2023.10.23 ·
458 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

KNN算法原理及实例

它的核心思想是通过寻找最近的邻居来进行分类或回归。KNN算法是一种基于实例的监督学习算法,常用于分类和回归任务。它的核心思想是:如果一个数据点附近的K个数据点中的大多数属于某一类别或者具有相似的数值,那么该数据点也很可能属于该类别或具有类似的数值。计算测试数据点与所有训练数据点之间的距离(通常使用欧几里得距离或其他距离度量方法)。优点:KNN算法的优点包括简单易懂、适用于多种问题、不需要训练过程。5.返回前k个点中出现频率最高的类别作为测试数据的分类。·KNN算法的优缺点。选择距离最近的K个训练数据点。
原创
发布博客 2023.10.09 ·
303 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

机器学习环境搭建(vscode+anaconda的安装+conda虚拟环境的激活)

机器学习环境搭建
原创
发布博客 2023.09.25 ·
257 阅读 ·
1 点赞 ·
2 评论 ·
2 收藏