
PCA(主成分分析)
PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。∑是一个m∗n的矩阵,∑除了对角线其它元素都为0,对角线上的元素称为奇异值。VT是V的转置矩阵,是一个n∗n的矩阵,它里面的正交向量被称为右奇异值向量。通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值和特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。其中,Q是矩阵A的特征向量组成的矩阵,Σ则是一个对角阵,对角线上的元素就是特征值。











