卷积神经网络-全面图解-带你了解前向后向传播的所有细节(文末代码)

卷积神经网络-全面图解-带你了解前向后向传播的所有细节

综述

本文将会从基础的前馈神经网络入手,通过bp神经网络,引出卷积神经网络,并把专门的重点放在如何理解和实现卷积神经网络的卷积层、下采样层、全连接层、以及最终的softmax的反向传播的理解。最后实现基于python的车标识别6分类网络

(代码:实现了 卷积、全连接、下采样等等前向、反向传播,将6类车标作为输入进行模型训练,不过是CPU版本的https://github.com/LonglongaaaGo/CNN_python 纯python实现的6分类网络,有问题可以联系我~
欢迎star 欢迎互粉

 

 

 

 

推导分析:

矩阵分析链接:https://blog.csdn.net/Willen_/article/details/87912967

首先:对X 求导时,对应的Z 表示的是 以向量X 为自变量,以Z 向量为应变量的函数关系有  Z =  f(X) ,所以可以直接带入矩阵求导公式(5.1.20)得出结果。

其次,对W求导时,对应的Z表示的是以 矩阵W 为自变量,以Z向量为因变量的函数关系,有 Z = f(W),但是没有直接的公式可以用(链接公式 5.1.26),只有正对输出为标量,输入为向量的实质求导公式,所以在这里做一下拆分就可以推出结果。

其中l代表第l层

j表示第j个卷积核

Mj 表示对应的通道数量

i 表示第i个通道

ps: 这里A的上标应该是l  不是i 打错了

 

这里应该还有一个求和在最左边,因为这里有k个卷积核,都要相应的计算进去

这里需要解释一下,

其中, 是上层卷积层输出 经过下采样之后的输出结果。

在CNN反向传播时,对于 [8],将其还原到池化层之前的大小。同时本实验是基于Max下采样,将 中的值移动到前向传播时池化操作之每一个子矩阵原先最大的位置。其中upsample( )表示一个上采样操作,若下采样因子为 m, 则通过上采样,将第l-1层的每个像素在水平和垂直方向上扩充m个像素, 于是就可以对应的计算从 l-1层的灵敏度上采样成卷积层 l 的灵敏度大小。 

这个灵敏度也可以理解为梯度,也就是说对于 l-1 层的梯度的计算,只要把l层的梯度进行上采样,还原原来的形状大小就可以了。

 

这里的激活层的反向传播都是很好计算的,求导求一下就好了,并且是维度是不变的,所以很好理解

 

 

 

 

代码:实现了 卷积、全连接、下采样等等前向、反向传播,将6类车标作为输入进行模型训练,不过是CPU版本的https://github.com/LonglongaaaGo/CNN_python 纯python实现的6分类网络,有问题可以联系我~
欢迎star 欢迎互粉 

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值