论文
文章平均质量分 85
DeepGoAI
欢迎学习交流!
展开
-
FACEMUG: A Multimodal Generative and Fusion Framework for Local Facial Editing (TVCG)2024
现有的人脸编辑技术虽然已取得显著成果,但在支持多模式的局部人脸编辑方面仍存在不足,尤其是在多次连续(增量)编辑后,图像的非目标编辑区域会被反复重新生成,导致无关区域受到反复变动,使得编辑质量大幅下降。每一行:给定一个输入图像(第一列),FACEMUG 通过瑕疵去除、样例引导的面部风格转换、语义引导的属性编辑、草图引导的发型编辑、颜色引导的化妆和属性条件的语义编辑(例如性别、年龄和表情)来增量编辑面部图像。对于每一组,FACEMUG 仅在指导信息(左上)的指导下编辑蒙版区域(左下)以生成编辑后的图像(右)。原创 2024-07-28 21:08:17 · 911 阅读 · 0 评论 -
AnyText: 多语言视觉文本生成与编辑
通过结合辅助潜在模块和文本嵌入模块,AnyText 能够在多种语言环境下生成清晰、准确的文本,并且可以轻松地集成到现有的扩散模型中,以提高文本的渲染和编辑质量。AnyText 通过一个包含辅助潜在模块和文本嵌入模块的扩散流程实现文本的生成或编辑,可以在图像中无缝整合文本,支持多种语言,是首个针对多语言视觉文本生成的工作。:结合潜在特征和文本嵌入,通过文本控制扩散管道生成或编辑图像中的文本,确保文本与图像背景的自然融合。这里展示了更多编辑的效果,在不规整的掩码下,依然可以做到毫无违和感的编辑效果。原创 2024-02-20 06:48:17 · 1113 阅读 · 0 评论 -
离谱!用ChatGPT进行审稿!
特别值得注意的是,这位教授99.9%确定这次评审完全是由ChatGPT完成的。因为在收到拒稿意见时,这位教授将整篇论文文本复制粘贴到ChatGPT中,并请求对论文进行一段摘要,得到的摘要与评审意见中的“论文贡献”部分几乎一致,只是在某些地方更换了一些单词。最近,一位教授的LinkedIn动态可谓是火了一把,他的论文被一个学术会议拒绝了,而原因竟然是……是的,那位审稿人可能在享受咖啡时,让AI来完成了“繁重”的工作!下次当你的论文被某个神秘的AI审稿人“青睐”时,别忘了,这可能只是一场由数字构成的梦幻泡影!原创 2024-02-18 22:43:33 · 4503 阅读 · 1 评论 -
论文介绍 FreeControl: 无需额外训练实现文本到图像的空间操控!
分析阶段和合成阶段。分析阶段:通过对种子图像的扩散特征进行主成分分析(PCA),形成时间依赖的基BtB_tBt,作为语义结构表示。合成阶段:结构引导帮助在引导图像IgI_gIg的指导下构建输出图像III的结构模板,而外观引导从相同种子生成的兄弟图像Iˉ\bar{I}Iˉ中借用外观细节。FreeControl支持多种控制条件、模型架构和自定义模型文件,能够处理大多数现有无训练方法失败的挑战性输入条件,并且与基于训练的方法相比,实现了竞争性的合成质量。转载 2024-02-13 01:03:01 · 144 阅读 · 0 评论 -
论文解读 One-step Diffusion with Distribution Matching Distillation
本文介绍了一种名为分布匹配蒸馏(DMD)的新技术,旨在加速扩散模型的图像生成过程,同时保持高质量的输出。DMD通过将扩散模型转化为一步生成模型,极大地提高了生成速度,达到了实时生成的目标。通过最小化真实与生成分布间的KL散度和引入回归损失,DMD能够在加速生成的同时,保证图像的多样性和质量。转载 2024-02-12 00:04:48 · 770 阅读 · 0 评论 -
论文介绍 VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder
本文介绍了一种从文本提示高效且灵活生成3D对象的新方法。通过采用轻量级网络从多视图图像获取特征体积,证明了这种方法能够有效扩大扩散模型训练所需的训练数据规模。转载 2024-02-10 23:50:51 · 81 阅读 · 0 评论 -
生成对抗网络 Generative Adversarial Nets(GAN)详解
生成对抗网络 Generative Adversarial Nets(GAN)详解近几年的很多算法创新,尤其是生成方面的task,很大一部分的文章都是结合GAN来完成的,比如,图像生成、图像修复、风格迁移等等。今天主要聊一聊GAN的原理和推导。github: http://www.github.com/goodfeli/adversarial论文: https://arxiv.org/abs/1406.2661背景介绍在GAN算法出来之前,关于生成的task表现一直都不太好,因为之前的方法由于在最原创 2022-01-30 21:54:36 · 2903 阅读 · 0 评论 -
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks源码链接:https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix论文链接:源码链接里有1.创新针对非成对的数据集,提出了一种通用型的image-to-image 的训练模...翻译 2018-12-18 15:55:33 · 878 阅读 · 0 评论 -
A new Energy Aware Cluster Based Multi-hop Energy Efficient routing protocol for Wireless Sensor Net
A new Energy Aware Cluster Based Multi-hop Energy Efficient routing protocol for Wireless Sensor Networks创新点在于,提出的阈值公式能够考虑到对应几点的传感器能量,通过对能力的考量,大大增加了网络稳定性和生命周期更长等特点。无线传感器面临的诸多问题和挑战 以上有图是...翻译 2018-12-17 10:19:04 · 667 阅读 · 0 评论 -
Image-to-Image Translation with Conditional Adversarial Networks
Image-to-Image Translation with Conditional Adversarial Networks论文主要内容:1.提出了一种对于gan的理解对于很多任务,我们都需要自己设计目标函数,来使得网络达到我们想要的任务和目的。而gan网络的出现,使得我们无需再手工设计我们的目标函数,而是利用gan网络来通过数据来“自动生成”我们想要的损失目标。文中提到,对于cn...原创 2018-12-13 12:41:43 · 301 阅读 · 0 评论 -
Non-Stationary Texture Synthesis by Adversarial Expansion
Non-Stationary Texture Synthesis by Adversarial Expansion1.主要创新点:利用Patch Gan,结合风格损失,L1损失,生成非固定纹理。2.对应损失的贡献:对抗损失作为纹理的主要生成 L1损失减少噪声和非自然的内容,但是太过平滑 风格损失使得图像最终加入更多细节,但是也加入了颜色的扭曲3.网络训练流程:------...原创 2018-11-28 16:29:32 · 1006 阅读 · 0 评论 -
论文句子
Focal Loss for Dense Object Detection1.prevents the vast number of easy negatives from overwhelming the detector during training.在训练期间防止大量容易的负面因素使检测器不堪重负。 2.Recent work on one-stage detect...原创 2018-11-15 10:50:32 · 370 阅读 · 0 评论