二手汽车评估

该博客探讨了二手汽车评估中不同分类模型的效果,包括逻辑回归、随机森林、KNN、SVM和GBDT。结果显示,GBDT和随机森林在分类效果上表现优秀,但考虑到时间成本,作者推荐使用随机森林。数据集包含1728条观测和7个特征,通过编码处理后进行建模。随机森林模型在测试集上的准确率达到了98.55%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二手汽车评估

数据集取自uci,对处理好的数据集分别进行逻辑回归、随机森林、knn、svm、GBDT分类建模,寻找较优的分类模型。

数据集特征描述:

buying 买入价格(vhigh,high,med,low)
maint 维护的价格(vhigh,high,med,low)
doors 门数(2,3,4,5更多)
persons 可乘人数(2,4,更多)
lug_boot 行李箱大小(small, med, big)
safety 安全性( low, med, high)
assessment(目标变量) 可接受性(unacc, acc, good, vgood)

导入相关库:
在这里插入图片描述
从存储数据集的excel文件将数据集读入、输出数据集前五行。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值