汽车评估的数据集

汽车评估的数据集,包含了6个属性和1个分类目标。这6个属性是购买价格、维修价格、门数量、座位数量、载货能力和安全性,分类目标是汽车的评估,包括4个取值:不可接受(unacc)、一般(acc)、好(good)、很好(vgood)。数据集共有1728个样本。这个数据集是由K. Sakthivel和S. Balakrishnam在1997年发布的。这个数据集被广泛用于分类算法的研究和实践。

import pandas as pd
import numpy as np
import math
from sklearn.model_selection import train_test_split
from sklearn import metrics

def naive_bayes(X_train, y_train, X_test):
    # Get unique labels from train_data
    labels = set(y_train)
    # Calculate prior probability for each label
    priors = {
   label: sum(y_train == label) / len(y_train)
              for label in labels}
    # Get unique feature values for each feature
    feature_values = [set(X_train[:, i]) for i in range(X_train.shape[<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值