汽车评估的数据集,包含了6个属性和1个分类目标。这6个属性是购买价格、维修价格、门数量、座位数量、载货能力和安全性,分类目标是汽车的评估,包括4个取值:不可接受(unacc)、一般(acc)、好(good)、很好(vgood)。数据集共有1728个样本。这个数据集是由K. Sakthivel和S. Balakrishnam在1997年发布的。这个数据集被广泛用于分类算法的研究和实践。
import pandas as pd
import numpy as np
import math
from sklearn.model_selection import train_test_split
from sklearn import metrics
def naive_bayes(X_train, y_train, X_test):
# Get unique labels from train_data
labels = set(y_train)
# Calculate prior probability for each label
priors = {
label: sum(y_train == label) / len(y_train)
for label in labels}
# Get unique feature values for each feature
feature_values = [set(X_train[:, i]) for i in range(X_train.shape[<