论文阅读-Learning Unified Anchor Graph for Joint Clustering of Hyperspectral and LiDAR Data

  • 一、目的

  • 解决多模态遥感数据的联合聚类问题,克服现有方法在处理大规模遥感数据时的计算挑战。
  • 融合不同模态的数据,以提高对地面覆盖类型的识别精度。

二、方法

  1. 引入基于锚点多视图核子空间聚类(AMKSC)框架。
  2. 核空间中学习一个可扩展的锚点图,并加入空间平滑操作以确保空间一致性
  3. 使用交替优化策略解决问题,并提供线性计算复杂度的理论证明。
  4. 提出一种基于多视图协同表示分类的样本外扩展(AMKSC-OOS),处理更大规模的数据集和未见实例

三、关键概念

(一)多模态遥感数据(Multimodal Remote Sensing Data)

多模态遥感数据是指通过不同传感器或技术手段获取的遥感数据,这些数据可以包括光学影像、合成孔径雷达(SAR)数据、红外图像、激光雷达数据等。这些不同模态的数据可以提供关于地球表面的互补信息,有助于更全面地理解和分析地表特征和现象。

(二)锚点图(Anchor Graph)

1、定义

锚点图(Anchor Graph)是一种数据结构,用于在高维数据中选择少量具有代表性的点(称为锚点)来近似表示整个数据集。锚点图通过这些锚点来简化数据表示和计算,特别适用于大规模数据集的处理。

2、特点

  • 代表性: 锚点是从原始数据集中选出的少量代表性数据点,能够有效地捕捉数据的主要结构和分布。
  • 近似性: 锚点图通过锚点近似表示原始数据点,大大减少了计算复杂度。
  • 效率: 由于使用了少量的锚点,锚点图能够显著提高数据处理和计算的效率,尤其在大规模数据集上。

3、锚点选择

(1)方法1: 使用聚类算法(如k-means)对数据进行聚类,选择每个聚类的中心作为锚点。
优点: 这种方法可以确保锚点具有代表性,因为聚类中心是数据的典型代表。
应用场景: 适用于数据分布较为均匀的情况。
选择具有特定特征的代表性数据点

(2)方法2: 根据数据的某些特征选择锚点,例如,在高光谱和LiDAR数据中,可以选择不同地物类型(如森林、草地、水体等)的典型像素点作为锚点。
优点: 这种方法可以更好地捕捉数据的多样性和复杂性,特别是在多模态数据的情况下。
应用场景: 适用于数据具有明显特征和差异的情况,例如遥感数据。

4、锚点图构建

在核空间中,通过锚点和原始数据点之间的关系,构建一个锚点图。这个图表示了每个数据点如何用这些锚点来近似表示。

具体来说,给定一个数据点 x,它可以表示为锚点集合{a1,a2,...an}的线性组合:

\mathbf{x}\approx\sum_{i=1}^m\alpha_i\mathbf{a}_i

5、自适应模态加权 

  • 论文中提出的框架考虑了不同模态(如HS和LiDAR数据)的不同贡献,通过自适应加权策略来学习每个模态的权重,从而在锚点图中平衡不同模态的数据。
  • 这个过程通过优化目标函数来实现,使得在核空间中构建的锚点图能够更好地表示多模态数据的联合特性。

6、空间平滑操作

  • 在锚点图的构建过程中,加入空间平滑操作,以确保聚类结果的空间一致性。
  • 具体来说,通过空间正则化技术,鼓励相邻的像素点在相似性图中具有相似的聚类标签,从而在地理上保持聚类结果的连续性。

(三)核空间(Kernel Space)

1、定义

核空间是指通过某种核函数将数据从原始的输入空间映射到高维或无限维的特征空间。这个特征空间通常能够更好地揭示数据的内在结构和模式,从而使得在原始空间中难以处理的问题在核空间中变得线性可分或更容易解决。

2、基本思想

①映射函数:将原始输入数据 x 映射到一个高维特征空间 H 中。

②核函数K(x,y):核函数是定义在输入空间 X 上的一个对称函数,满足 Mercer's 定理。

③核技巧(Kernel Trick):

  • 核技巧利用核函数来计算在特征空间中的点积,而无需显式地进行高维映射。
  • 通过计算核函数,可以直接在原始空间中进行运算,避免了高维计算的复杂性。 

④优点

  • 处理非线性关系:核空间能够揭示原始空间中隐藏的非线性关系,使得许多复杂问题在高维空间中变得线性可分或更易处理。
  • 增强模型能力:核方法通过在高维空间中进行运算,能够提高模型的表达能力和分类精度。
  • 避免高维计算复杂性:核技巧允许在原始空间中进行计算,避免了显式高维映射带来的计算复杂性。

(四)空间平滑(Spatial Smoothing)

1、定义

空间平滑是一种数据处理技术,旨在利用空间上的相邻或接近点之间的关系来提高数据的一致性和可靠性。其核心思想是:在空间上相邻的数据点往往具有相似的属性,因此通过平滑操作可以减少噪声、增强信号,并在数据处理和分析中保持空间一致性。

2、目的

  • 减少噪声: 平滑处理可以过滤掉数据中的随机噪声,使得数据更加平滑和连续。
  • 增强信号: 通过结合相邻点的信息,可以增强数据的主要信号,突出数据的整体趋势和模式。
  • 保持空间一致性: 在数据分析(如聚类或分类)中,空间平滑有助于保持空间上相邻点的一致性,避免不合理的分割或分类结果。

3、方法:卷积平滑、邻域平均、正则化。

(五)样本外扩展(Out-of-Sample Extension)

1、定义

样本外扩展(Out-of-Sample Extension)是一种在数据分析和机器学习中处理未见数据(即训练过程中未使用的数据)的方法。它旨在将学习到的模型或表示推广到新的数据点,从而提高模型的泛化能力。

2、实现

①Nyström方法:基于矩阵分解的技术,用于近似计算核矩阵,从而实现样本外扩展。

(1)步骤

  • 从原始数据中随机选择一小部分样本(称为“基样本”)。
  • 使用这些基样本计算部分核矩阵,并通过矩阵分解近似整个核矩阵。
  • 对新的数据点,使用基样本和近似核矩阵进行扩展计算。

(2)公式

②基于多视图的协同表示

(1)步骤

  • 学习每个模态的数据表示,通过稀疏编码、低秩表示等方法得到每个模态的特征表示。
  • 对新的数据点,利用多模态数据的协同表示进行扩展,即通过每个模态的特征表示和表示矩阵共同表示新的数据点。

(2)公式

四、主要贡献点

  1. 提出的AMKSC方法在处理大规模数据时具有良好的扩展性,能在核空间中学习复杂的非线性子空间结构,并保证空间一致性。
  2. AMKSC-OOS扩展了模型的泛化能力,使其能够处理未见数据,并在三组实际异构遥感数据集上显著优于现有最先进的方法。

五、拆解阅读

(一)introduction

1、如今,地球观测领域见证了遥感(RS)数据的爆炸性增长,其特点是数据多样性和能力不断增强。这些多模态数据提供了互补信息,克服了单一模态在观测中的局限性。例如,多光谱(MS)或高光谱(HS)数据提供了关于地表材料的丰富内容信息,而激光雷达(LiDAR)数据则提供了海拔信息。将这些不同来源的数据结合起来,可以对感兴趣区域进行更全面的理解。正如图1所示,联合考虑HS和LiDAR数据可以显著缓解HS数据的光谱变化问题。因此,多模态RS数据的联合地面覆盖识别已成为RS和机器学习社区中一个有前景的研究方向。

  • 高光谱数据HS:具有非常高的光谱分辨率,能够捕获数百个连续的光谱波段。利用在不同光谱波段上的折射率来区分物体。
  • 多光谱数据MS:光谱分辨率相对较低,通常只包含几个到几十个光谱波段,但是比HS具有更高的空间分辨率。

图1:展示使用多模态数据的意义,单单依靠波长和折射率的信息无法区分树木和天然草皮,需要结合海拔信息,才能有效区分。

2、过去几十年中,多模态RS数据的监督分类方法得到了广泛探索,从浅层模型发展到深度模型。Mäyrä等人、Xue等人、Jia等人和Wang等人分别提出了用于HS和LiDAR数据联合分类的有前途的方法。然而,这些方法,特别是深度学习方法,严重依赖于需要人工标注的广泛训练数据,导致劳动力密集且成本高昂。相比之下,多模态RS数据的无监督联合聚类提供了一种克服人工标注需求的途径。不幸的是,只有少数研究专注于多模态RS数据的无监督联合聚类,例如Rafiezadeh Shahi等人和Shahi等人的工作。这一领域研究的稀缺主要归因于多模态RS对象的内在多样性和复杂性,在没有参考的情况下有效融合互补信息和实现语义对齐具有挑战性。此外,测量异构RS数据样本之间的相似性,这对联合聚类至关重要,也构成了另一个重大挑战。

①挑战:

挑战1:在没有参考的情况下有效融合互补信息和实现语义对齐具有挑战性。

(1)有效融合互补信息:高光谱数据和LiDAR数据各自有其独特的优势,通过融合,可以互补不足。例如,高光谱数据能够识别不同的植被类型,但可能在区分高度相似的植被时存在困难,而LiDAR数据可以通过高度信息帮助区分这些植被类型。

(2)实现语义对齐:语义对齐是指在多模态数据的融合过程中,将来自不同模态的数据对齐到相同的语义空间,使得它们能够共同描述同一个地物或场景。例如,一个像素点在高光谱数据中被识别为树木,在LiDAR数据中也应反映出对应的高度信息,而不是其他类型的地物。

挑战2:测量异构RS数据样本之间的相似性。

  • 不同地物之间的数据差异大,例如,水体在高光谱数据中具有特定的反射率特征,在LiDAR数据中高度为零,而建筑物在高光谱数据中和水体不同,在LiDAR数据中则具有明显的高度。
  • 同一地物的相似。比如同一片森林在高光谱数据中具有相似的光谱曲线,在LiDAR数据中具有相似的高度分布。

3、在机器学习社区,子空间聚类已成为单模态和多模态数据中最成功的聚类范式之一。由于其理论完备性和稳定性能,子空间聚类在包括HS图像聚类在内的各种领域中取得了成功应用。子空间聚类扩展到多视图数据通常被称为多视图子空间聚类(MVSC)。近年来,MVSC研究取得了显著进展,产生了广泛的方法,包括基于潜在表示、深度神经网络和二部图学习的方法。

(1)子空间聚类

①目的:

  • 从高维数据中发现和挖掘低维子空间中的数据群体(即簇)。
  • 例子:癌症研究中,不同类型的癌症可能会在特定的基因表达子空间中形成聚类。通过子空间聚类,研究人员可以识别出与特定癌症类型相关的基因表达模式,进而开发个性化的治疗方案。

②子空间假设:

  • 假设数据点在一个高维空间中,但实际上是由若干低维子空间生成的。这些低维子空间可能彼此正交,也可能存在重叠。
  •  在人脸识别中,不同人的人脸图像可能形成不同的低维子空间。例如,所有微笑人脸图像可能形成一个子空间,而所有正脸人脸图像可能形成另一个子空间。子空间聚类可以有效地将这些子空间中的数据点聚类到一起。

③自表示模型:子空间聚类通常使用自表示模型,即每个数据点可以用同一子空间中的其他数据点的线性组合表示。这种方法可以通过稀疏表示、低秩表示等技术实现。

④稀疏子空间聚类SSC:

  • 通过稀疏表示将数据点表示为同一子空间内其他点的线性组合,以此构建相似性矩阵,然后进行谱聚类。
  • 每个数据点可以表示为同一子空间中其他数据点的稀疏线性组合,即大多数系数为零,只有少数非零系数。
  • 在图像去噪中,假设我们有一组干净的图像和一组噪声图像。通过稀疏表示,可以用少量的干净图像来表示噪声图像,从而实现去噪。

⑤低秩子空间聚类LRR:

  • 使用低秩矩阵分解方法,通过寻找最低秩的表示矩阵来构建相似性矩阵。
  • 低秩表示假设数据矩阵可以分解为两个低秩矩阵的乘积,从而发现数据的低维结构。
  • 在推荐系统中,用户-物品评分矩阵通常是稀疏且高维的。通过低秩矩阵分解,可以找到用户和物品的低维表示,从而进行推荐。

⑥聚类步骤:

  • 构建相似性矩阵:通过自表示模型构建数据点之间的相似性矩阵。
  • 谱聚类:应用谱聚类技术对相似性矩阵进行聚类分析,识别出不同的簇。通过相似性矩阵构建拉普拉斯矩阵,然后对其进行特征分解,将数据投影到低维空间,再进行聚类。假设有图像像素点pi和pj,构建相似性矩阵S,计算拉普拉斯矩阵L,对L进行特征分解,最后在低维空间中进行聚类。

(2)多视图子空间聚类MVSC

①区别:多视图子空间聚类是子空间聚类的一种扩展,旨在处理多模态或多视图数据。它假设不同视图的数据可以提供互补的信息,通过联合分析这些视图来提高聚类的准确性和鲁棒性。

②多视图数据表示:多视图数据来自于同一对象或现象的不同模态或视角,例如,图像的不同特征、文本的不同描述等。

③子空间假设:每个视图的数据可以被看作是来自不同低维子空间,但这些子空间之间可能存在相关性。

④联合子空间学习:通过联合学习不同视图的子空间表示,构建一个综合的相似性矩阵。这可以通过以下几种方式实现:

  • 共训练: 对不同视图的子空间进行独立训练,然后通过某种方式融合这些子空间表示。
  • 协同训练: 同时对所有视图的子空间进行训练,确保它们之间的一致性和互补性。

⑤自表示子空间:

  • 多视图稀疏子空间聚类(MV-SSC):对每个视图分别进行稀疏表示,然后将不同视图的相似性矩阵融合,进行谱聚类。
  • 多视图低秩子空间聚类(MV-LRR):使用低秩表示方法,同时对所有视图进行联合低秩表示,构建综合的相似性矩阵。

⑥聚类步骤:

  • 构建综合相似性矩阵:通过联合不同视图的数据表示,构建一个综合的相似性矩阵。
  • 谱聚类:应用谱聚类技术对综合相似性矩阵进行聚类分析,识别出不同的簇。

4、通过将多模态RS数据视为多视图数据可以直接应用MVSC进行联合聚类。然而,现有MVSC方法存在几个局限性。首先,它们在构建相似性图和进行特征分解时表现出二次和三次复杂性,导致它们不适合大规模多模态RS数据。其次,多模态RS数据中的地面覆盖类型具有非线性相互依赖性、噪声和冗余,这源于RS数据的多样性和复杂性。传统MVSC的线性假设不足以有效建模此类数据。第三,多模态RS数据通常包含丰富的空间信息,在数据解释中起着关键作用。不幸的是,MVSC未能探索输入数据之间的空间依赖性,导致聚类图中的空间一致性较差。最后,现有MVSC方法通常缺乏对样本外数据的泛化能力,因为它们通常是为固定数据集设计的。在实际应用中,通用聚类对于开放世界机器学习方法的设计至关重要。这些限制显著阻碍了MVSC在多模态RS数据上的有效性、效率和适用性。

局限性:

1、不适合大规模多模态RS数据:构建相似性图和进行特征分解时表现出二次和三次复杂性。

2、非线性相互依赖性、噪声和冗余: 特征之间非线性,光谱特征与高度特征之间的关系通常是非线性的。例如,森林的树冠高度和光谱反射率之间可能存在复杂的非线性关系,因为不同高度的树木在不同波段的反射率会有不同的变化。

3、空间一致性差:

  • 输入的空间依赖性:数据点之间在空间上的相关性,即地理上相邻或接近的数据点往往具有相似的属性或特征。这种依赖性在遥感数据中尤为明显,例如,地理位置相近的地物类型通常相似。
  • 空间一致性:意味着空间上相邻或接近的数据点被分到相同的簇中。也就是说,聚类结果应反映数据的地理连续性和一致性。

4、缺乏对样本外数据的泛化能力

5、为了解决上述局限性,本文提出了一种称为基于锚点的多视图核子空间聚类与空间正则化(AMKSC)的方法,用于HS-LiDAR数据。AMKSC通过引入锚点图学习框架来克服扩展性问题,该框架在数据规模上实现线性复杂性,使其适用于大规模数据集。我们的框架通过自适应模态加权策略考虑了不同模态的不同贡献。为了处理RS数据的非线性,我们采用Nyström近似的核方法将多模态数据隐式映射到高维再生核希尔伯特空间(RKHS),从而能够学习复杂的非线性子空间结构。为了应对MVSC中缺乏空间探索的问题,我们在锚点表示上施加联合空间正则化,促进空间平滑的相互依赖性。此外,我们提出了AMKSC的样本外扩展(AMKSC-OOS),通过多视图协同表示分类将AMKSC推广到样本外数据。通过将这些设计集成到一个统一的框架中,我们实现了一个高效且有效的多模态RS数据联合聚类方法。 ​​

(二)Related Work

1、子空间聚类subspace clustering

子空间聚类最初是为高维数据提出的,假设数据点来自低维子空间的联合。子空间假设可以通过以下数据点的线性自表示来表述:

\arg\min\mathbf{C}\left\|\mathbf{X}-\mathbf{X}\mathbf{C}\right\|_F^2+\lambda\Omega(\mathbf{C}),\mathrm{~s.t.~}C_{ii}=0.

这里,第一项表示重建误差,第二项表示通过 λ 平衡的正则化项,C是表示自表示系数矩阵。在实践中,函数Ω 可能根据数据分布的具体假设而有所不同。例如,稀疏子空间聚类[13]采用L1范数,而低秩子空间聚类[28]使用核范数。求解 (1) 后,子空间聚类构建一个相似性图矩阵,并应用谱聚类进行分割。近年来,子空间聚类在遥感社区中展示了显著的成功,特别是在高维HS图像的聚类中。例如,Cai等人[14]、[15]、[16]提出了一系列结构化子空间聚类方法,并在HS数据上取得了显著的性能。然而,标准子空间聚类中相似性图构建和谱聚类的计算复杂度分别为O(N²),O(N³),这使得它们在大规模数据集上变得计算上不可行。为了解决这一挑战,一种常见的方法是用锚点图替换完整的相似性图[23]、[29]、[30],可以表示为:

\arg\min\mathbf{Z}\left\|\mathbf{X}-\phi(\mathbf{X})\mathbf{Z}\right\|_F^2+\lambda\Omega(\mathbf{Z}),\mathrm{~s.t.~}Z_{ii}=0\quad(2)

 其中Z表示锚点图,表示锚点生成操作,通常通过随机选择、k-means或可学习策略实现。因此,子空间聚类问题转化为具有可管理的计算复杂度O(MN),的二分图分割问题[25]。我们的方法遵循类似的想法。

2、多视图聚类multiview clustering

多视图聚类旨在基于它们的异构特征将数据划分为不同的组。设计有效的多视图聚类方法的关键在于融合补充信息和测量多模态输入的相似性。近几十年来,基于子空间的融合越来越受到关注,并激发了许多代表性工作[31],通常称为多视图子空间聚类(MVSC)。此外,其他有前景的替代方案包括多核学习[32]、基于图的融合[23]和基于深度学习的融合[10]。正式地,MVSC通常寻求使用以下公式找到共识子空间:

\arg\min\mathbf{Z}_v,\mathbf{Z}^*\sum_{v=1}^V\|\mathbf{X}_v-\mathbf{X}_v\mathbf{Z}_v\|_F^2+\lambda\Omega(\mathbf{Z}_v)+\Psi(\mathbf{Z}^*,\mathbf{Z}_v)\mathrm{~s.t.~}Z_{vii}=0

其中Zv表示视图特定的子空间表示矩阵,Z*是多个模态之间的共识子空间表示,φ表示子空间融合策略。MVSC继承了单视图子空间聚类的某些局限性,如可扩展性和线性子空间。关于可扩展性,基于锚点的策略在各种MVSC方法中证明了其有效性[23]、[29]、[30]、[33]、[34]、[35]。该策略也常用于不完整的多视图聚类[10]、[21]的上下文中。为了深入研究非线性子空间,现有工作通常采用显式策略(例如基于神经网络的方法[20])或隐式策略(例如基于核的方法[32])。尽管多视图聚类方法取得了巨大成功,但它们在多模态遥感领域并未得到与其成功相匹配的关注。只有少数工作[11]、[12]尝试将多视图聚类应用于多模态遥感数据,它们的聚类性能缺乏竞争力,与当前最先进的结果相比。这种差异可以归因于现有MVSC方法面临的几个挑战:1)处理大规模多模态遥感数据的困难;2)探索数据的非线性子空间结构的挑战;3)确保相邻像素的SC的斗争;4)推广到样本外数据的障碍。为了解决这些挑战,本文介绍了一种新的MVSC方法(AMKSC),它解决了上述问题。与现有工作相比,提出的AMKSC将可扩展性、NL、SC和泛化能力整合到一个统一的框架中。

(三)method

1、problem formulation

为了充分探索遥感模态之间的复杂相关性,我们认为一个有效的联合聚类方法至少应该具备以下特征:可扩展性、非线性、自适应模态权重和空间一致性。基于这些见解,我们提出了具有以下核心设计的AMKSC方法。

  • 可扩展性:而不是学习一个完整的相似性图,我们引入了一个基于锚点的表示学习方案,为多模态输入学习一个更小规模的锚点图,使我们的模型能够扩展到大规模数据集。这种设计显著降低了原始自表示的计算复杂度,使其更有效地处理大量数据。
  • 非线性:我们使用隐式映射 ϕ(⋅) 将原始数据特征映射到再生核希尔伯特空间(RKHS),这种转换允许我们的方法利用核技巧并探索数据分布的非线性结构,从而更好地处理不同模态之间的复杂关系。
  • 自适应模态权重:鉴于不同模态的不同重要性,我们提出了一个自适应权重因子 μv 来平衡它们的贡献。这种自适应加权策略使模型能够更有效地探索跨模态的互补信息,增强其可解释性和整体性能。
  • 空间一致性:我们对锚点图表示施加了放松的全变分(TV)正则化,表示为 R(Z),这鼓励相同锚点在相邻像素中的子空间表示具有分段常数(或平滑)的过渡,促进空间一致的聚类结果。

通过将这四个设计整合到一个统一的目标函数中,得出了提出的AMKSC框架,如图2所示。优化问题正式定义如下:

\begin{aligned}&\arg\min_{\mu_v,Z}\frac12\sum_{v=1}^V\mu_v^\gamma\|\phi(\mathbf{X}_v)-\phi(\mathbf{A}_v)Z\|_F^2+\frac\lambda2\|Z\|_F^2+\frac\alpha2R(Z)\\&\mathrm{s.t.}\quad\mu_v>0,\sum_{v=1}^V\mu_v=1\end{aligned}

\mathbf{a}_v=[\mathbf{a}_{v1},\mathbf{a}_{v2},...,\mathbf{a}_{vM}]\in\mathbb{R}^{d_v\times M}表示第v个模态的视图特定锚点。λ和α都是正则化系数,γ是平滑系数。γ=1 时,(4)简化为线性规划问题,其最优解总是位于线性可行区域的顶点。因此,模态权重 μv变得高度稀疏,只突出显示与锚点图强相关的模态。这种对单一模态的过分强调可能会降低多模态输入的区分能力。相反,当γ接近无穷大时,所有模态共享相同的权重,可能导致不同模态中存在的互补信息的利用不足。因此,应该根据不同模态展示的互补性来确定γ最优值。

让N表示空间域中水平和垂直邻居的集合。

R(Z)=\sum_{m=1}^M\sum_{\{i,j\}\in N}\|z_{im}-z_{jm}\|^2=\|\mathbf{D}_xZ^\top\|_F^2+\|\mathbf{D}_yZ^\top\|_F^2

其中zm表示与锚点am相关的表示系数,Dx和Dy分别作为水平和垂直方向上的前向有限差分算子。空间正则化促进了相邻像素中具有相同锚点的子空间表示中的空间一致性(SC)的提升。

最终优化结果:

\arg\min_{\mu_v,\mathbf{Z}}\frac12\mathrm{Tr}\left(\sum_{v=1}^V\mu_v^\gamma\left(\mathbf{K}_1^v+\mathbf{Z}^\top\mathbf{K}_2^v\mathbf{Z}-2\mathbf{K}_3^v\mathbf{Z}\right)+\lambda\mathbf{Z}^\top\mathbf{Z}\\+\alpha\mathbf{Z}(\mathbf{D}_x^\top\mathbf{D}_x+\mathbf{D}_y^\top\mathbf{D}_y)\mathbf{Z}^\top\right)\\\mathrm{s.t.~}\mu_v>0\sum_{v=1}^V\mu_v=1\text{(6)}

 

2、Optimization Strategy:uv和Z的交替更新

3、锚点选择,并利用统一锚点图进行聚类

①为了解决锚点不对齐问题,我们提出了一种简单有效的策略,即将不同视图的所有特征拼接后进行k-means聚类,再将聚类中心拆分到各自的视图中。这种策略保证了锚点在不同视图间的一致性,有利于后续的锚点图融合。

②具体步骤

③混合像素问题与类别不平衡问题:AMKSC通过TV正则化和隐式非线性核有效应对。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值