K-means详解及python实现

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

                                                                 

算法过程如下:

1)从N个文档随机选取K个文档作为质心

2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类

3)重新计算已经得到的各个类的质心

4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束

具体如下:

输入:k, data[n];

(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];

(2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;

(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;

(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值

python代码如下:

# file name: K_means
# function: K_均值聚类算法
# author: 宋志勇
# time:2017.10.07


# -*- coding: UTF-8 -*-
import numpy
import random
import matplotlib.pyplot as plt


def findCentroids(data_get, k):    # 随机获取k个质心

    return random.sample(data_get, k)


def calculateDistance(vecA, vecB):    # 计算向量vecA和向量vecB之间的欧氏距离

    return numpy.sqrt(numpy.sum(numpy.square(vecA - vecB)))


def minDistance(data_get, centroidList):
    # 计算data_get中的元素与centroidList中k个聚类中心的欧式距离,找出距离最小的
    # 将该元素加入相应的聚类中

    clusterDict = dict()  # 用字典存储聚类结果
    for element in data_get:
        vecA = numpy.array(element)  # 转换成数组形式
        flag = 0  # 元素分类标记,记录与相应聚类距离最近的那个类
        minDis = float("inf")  # 初始化为最大值

        for i in range(len(centroidList)):
            vecB = numpy.array(centroidList[i])
            distance = calculateDistance(vecA, vecB)  # 两向量间的欧式距离
            if distance < minDis:
                minDis = distance
                flag = i  # 保存与当前item距离最近的那个聚类的标记

        if flag not in clusterDict.keys():  # 簇标记不存在,进行初始化
            clusterDict[flag] = list()
        clusterDict[flag].append(element)  # 加入相应的类中

    return clusterDict  # 返回新的聚类结果


def getCentroids(clusterDict):

    centroidList = list()
    for key in clusterDict.keys():
        centroid = numpy.mean(numpy.array(clusterDict[key]), axis=0)  # 求聚类中心即求解每列的均值
        centroidList.append(centroid)

    return numpy.array(centroidList).tolist()


def calculate_Var(clusterDict, centroidList):
    # 计算聚类间的均方误差
    # 将类中各个向量与聚类中心的距离进行累加求和

    sum = 0.0
    for key in clusterDict.keys():
        vecA = numpy.array(centroidList[key])
        distance = 0.0
        for item in clusterDict[key]:
            vecB = numpy.array(item)
            distance += calculateDistance(vecA, vecB)
        sum += distance

    return sum


def showCluster(centroidList, clusterDict):
    # 画聚类结果

    colorMark = ['or', 'ob', 'og', 'ok', 'oy', 'ow']  # 元素标记
    centroidMark = ['dr', 'db', 'dg', 'dk', 'dy', 'dw']  # 聚类中心标记
    for key in clusterDict.keys():
        plt.plot(centroidList[key][0], centroidList[key][1], centroidMark[key], markersize=12)  # 画聚类中心
        for item in clusterDict[key]:
            plt.plot(item[0], item[1], colorMark[key])  # 画类下的点

    plt.show()


data = [[0.0, 0.0], [3.0, 8.0], [2.0, 2.0], [1.0, 1.0], [5.0, 3.0],
        [4.0, 8.0], [6.0, 3.0], [5.0, 4.0], [6.0, 4.0], [7.0, 5.0]]


if __name__ == '__main__':

    centroidList = findCentroids(data, 3)  # 随机获取3个聚类中心
    clusterDict = minDistance(data, centroidList)  # 第一次聚类迭代
    newVar = calculate_Var(clusterDict, centroidList)  # 计算均方误差值,通过新旧均方误差来获得迭代终止条件
    oldVar = -0.0001  # 初始化均方误差

    print('***** 第1次迭代 *****')
    for key in clusterDict.keys():
        print('聚类中心: ', centroidList[key])
        print('对应聚类: ',clusterDict[key])
    print('平均均方误差: ', newVar)
    showCluster(centroidList, clusterDict)  # 展示聚类结果

    k = 2
    while abs(newVar - oldVar) >= 0.0001:  # 当连续两次聚类结果差距小于0.0001时,迭代结束
        centroidList = getCentroids(clusterDict)  # 获得新的聚类中心
        clusterDict = minDistance(data, centroidList)  # 新的聚类结果
        oldVar = newVar
        newVar = calculate_Var(clusterDict, centroidList)

        print('***** 第%d次迭代 *****' % k)

        for key in clusterDict.keys():
            print('聚类中心: ', centroidList[key])
            print('对应聚类: ', clusterDict[key])
        print('平均均方误差: ', newVar)
        showCluster(centroidList, clusterDict)  # 展示聚类结果

        k += 1

得到的结果如下


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页