Pollard-Rho 学习笔记

去洛谷看我的博客

前言

其实很早就看到过了,下定决心去学的,居然是因为翻到之前口胡的题目,然后发现之前做法假了,继续尝试做的时候发现需要这个算法,于是,题目就绿->黑了。

Step.1 引入

求一个数的所有因数,这个问题伴随了我们很久了,现在又要翻出来鞭尸。

最开始的时候,我们使用的是最朴素的 O ( n ) O(n) O(n) 试除法,即一个数一个数去试,但是当 n n n 超过 1 0 8 10^8 108 或者更大的时候就不太现实了,于是我们学习了 O ( n ) O(\sqrt n) O(n ) 的改进版试除法,只在 [ 1 , n ] [1,\sqrt n] [1,n ] 之间尝试,找到了就可以找到其在 [ n , n ] [\sqrt n,n] [n ,n] 之间唯一对应的因数,因此只需要试 n \sqrt n n 次,同样地,当 n n n 超过 1 0 16 10^{16} 1016 时,也变得不现实。

现在,我们需要解决的便是这样一个问题。

Step.2 从悖论出发

悖论,即数学模型与平时的经验产生了极大的反差。

这里将举出几个例子:

生日悖论,如果一共有 k k k 人,设 p p p 为存在两个人生日相同的概率,不考虑闰年,那么当 k k k 达到 23 23 23 人的时候, p p p 就已经超过了 0.5 0.5 0.5

如果你没有听过,那么这个悖论可能会让你难以置信,我们不妨来简单计算一下概率。

直接计算 p p p 是不方便的,我们可以求不存在两个人生日相同的概率,第一个人的生日是随便的,第二个人不能和第一个人一样,概率为 364 365 \frac {364}{365} 365364,第三个人不能和前两个人一样,概率为 363 365 \frac {363}{365} 365363,依此类推,再将所有的概率乘在一起。

可以得到一个 k k k 个人时的通式 ∏ i = 1 k 365 − i + 1 365 \prod_{i=1}^k \frac{365-i+1} {365} i=1k365365i+1

k k k 23 23 23 的时候,就是 365 ! 342 ! × 36 5 23 \frac{365!}{342!\times 365^{23}} 342!×36523365!

通过计算机可以得到答案为 0.4927 0.4927 0.4927,那么 p p p 就是 1 − 0.4927 = 0.5073 1-0.4927=0.5073 10.4927=0.5073,已经超过一半。

如果我们再把 k k k 扩大,扩大到 50 50 50,答案约为 0.0296 0.0296 0.0296,已经非常小了, p p p 则已经超过了 0.97 0.97 0.97

再来一个例子,如果我们在 [ 1 , 1000000 ] [1,1000000] [1,1000000] 中等概率地随机选一个数,那么刚好选到 114514 114514 114514 的概率只有 1 1000000 \frac 1 {1000000} 10000001,但是如果我们选择两个数 a a a b b b,那么满足 ∣ a − b ∣ = 114514 |a-b|=114514 ab=114514 的概率就会提升很多,比 1 500000 \frac 1 {500000} 5000001 要小一些。

可以感性理解,如果我们选择了一个数 a a a,那么满足条件的 b b b 可以是 a − 114514 a-114514 a114514 也可以是 a + 114514 a+114514 a+114514,当然了如果 a a a 较小或者较大,则只有一种方式合法,所以比 1 500000 \frac 1 {500000} 5000001 要小一些。

可以发现,我们直接等概率取,想要取到特定的值概率会较小,但是如果我们取多个,并通过限制,也就是扩大范围,就可以有效地让概率提升。

更进一步,我们在一个范围内随机生成数,每多生成一个数,就等于多了一个限制条件,那么想要生成两个相同的数,需要的数期望会很少,可以参考知乎的这个回答,在 [ 1 , n ] [1,n] [1,n] 范围内,每次随机选择一个数,在出现重复数字之前,期望会选择 π n 2 \sqrt \frac{\pi n} 2 2πn 个数。

Step.3 基于随机数的“乱搞”做法

回到我们需要求的问题,找到 n ∈ [ 1 , 1 0 18 ] n\in[1,10^{18}] n[1,1018] 的因数。

首先,可以直接随机,然后判断是否是因数,但是这样做概率实在太小了,最坏情况甚至会一直找不到,显然还不如 O ( n ) O(\sqrt n) O(n ) 优秀。

所以考虑扩大范围,来让概率尽可能地提升。

可以发现,我们原本的随机实际上是有损失的,比如: n = 24 n=24 n=24,随机的数是 18 18 18,显然, 18 18 18 不是 24 24 24 的因子,但是它们都共同拥有因子 6 6 6,所以我们可以尝试通过最大公因数找因子。

假设随机到的数是 p p p,那么 gcd ⁡ ( p , n ) \gcd(p,n) gcd(p,n) 就一定是 n n n 的因子,当然, gcd ⁡ ( p , n ) = 1 \gcd(p,n)=1 gcd(p,n)=1 的情况是无意义的。

所以我们完全可以通过 gcd ⁡ ( p , n ) \gcd(p,n) gcd(p,n) 去寻找因数,这样提升的概率是很显著的。

对于合数,与它互质的数字个数不是很多,但是想要保证概率还是困难的。

想到悖论的第二个例子,我们可以选择若干个数 x i x_i xi,通过计算 gcd ⁡ ( ∣ x i − x j ∣ , n ) , i ≠ j \gcd(|x_i-x_j|,n),i\not = j gcd(xixj,n),i=j 来寻找 n n n 的因子,可以证明(虽然我不会),大约选择 n 1 4 n^{\frac 1 4} n41 个数字就可以有大概率找到至少一个因子。

但是显然,如果选择那么多个因子,再两两相减找因子,那复杂度又退化到了 O ( n ) O(\sqrt n) O(n )这不是吃饱了没事干吗

不过不需要着急,直到现在,都还没有出现本次的主题 Pollard-Rho 呢。

Step.4 Pollard 随机数立大功

Pollard 构造了一个伪随机数生成的函数: f ( x ) = ( x 2 + c )   m o d   n f(x)=(x^2+c)\bmod n f(x)=(x2+c)modn,其中 c c c 是一个随机常量。

然后通过递归生成随机数,如,从 x 0 x_0 x0 开始生成随机数,其中 x 0 x_0 x0 可以任意选择,然后就可以用以下规则生成随机数, x i = ( x i − 1 2 + c )   m o d   n x_i=(x_{i-1}^2+c)\bmod n xi=(xi12+c)modn

因为每次生成都会对 n n n 取模,所以值域是固定的,在经过若干次生成后,必然会陷入一个循环,形成的序列很像 ρ \rho ρ,所以叫做 Pollard-Rho。

下图就是我随手画的 n = 10000 , c = 23 n=10000,c=23 n=10000,c=23 的图(很丑,将就看):

事实上,说这个序列长得像 ρ \rho ρ 我觉得有点牵强,他的真实含义应该是,前面有部分序列不是循环节,后面是循环节的意思, ρ \rho ρ 应该是一个比较形象的比喻。

就是因为存在环,所以这是一个伪随机生成函数。

那么,为什么不使用现在比较常用的随机数生成方法,而专门构造一个生成方式呢?

这是因为按照这种方式生成的序列具有一个很重要的性质:对于所有的 x , y x,y x,y,如果满足 x ≡ y ( m o d p ) , p ∣ n x\equiv y \pmod p,p\mid n xy(modp),pn,那么就有 f ( x ) ≡ f ( y ) ( m o d p ) f(x)\equiv f(y) \pmod p f(x)f(y)(modp)

证明比较简单,先令 x = a p + d , y = b p + d , a , b ∈ Z , d ∈ [ 0 , p ) x=ap+d,y=bp+d,a,b\in \mathbb{Z},d\in [0,p) x=ap+d,y=bp+d,a,bZ,d[0,p)

那么,对于 f ( x ) = x 2 + c f(x)=x^2+c f(x)=x2+c,我们可以将 x = a p + d x=ap+d x=ap+d 代入得到, f ( x ) = ( a p + d ) 2 + c = ( a p ) 2 + 2 a p d + d 2 + c f(x)=(ap+d)^2+c=(ap)^2+2apd+d^2+c f(x)=(ap+d)2+c=(ap)2+2apd+d2+c

那么 f ( x )   m o d   p = d 2 + c = f ( d ) f(x)\bmod p=d^2+c=f(d) f(x)modp=d2+c=f(d)

同理, f ( y )   m o d   p = f ( d ) f(y)\bmod p=f(d) f(y)modp=f(d)

所以 f ( x ) ≡ f ( y )   m o d   p f(x)\equiv f(y) \bmod p f(x)f(y)modp

这个性质的作用非常大,但是目前我们还用不到,将会在下一步出现,不过,同样的,如果某个随机数生成方法也有这个性质,那么也可以使用这个随机数生成方法,但是一般情况 Pollard 的随机数生成方法已经足够优秀了。

那么,我们将 p p p 选择为 n n n 的最小非 1 1 1 因子,那么显然 p < n p<\sqrt n p<n

根据前面的理论,所有的 x i   m o d   p x_i\bmod p ximodp 中随机选择,直到出现环,也就是出现重复的数字,忽略常熟,那么生成的不同的值大约有 p \sqrt p p 个。

这也是为什么复杂度有个奇怪的 n 1 4 n^{\frac 1 4} n41,但是目前的算法还没有得到进展,想要真正地变为 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41) 还有几步需要走。

Step.5 判环

因为随机数序列存在环,所以判环就是很重要的环节了,如果选择 map 等 STL 较为暴力地判环,复杂度就不够优秀,这里介绍一种 Pollard-Rho 基本上都会用的判环方法–Floyd 判环。需要注意,这个 Floyd 和最短路的 Floyd 不一样,仅仅是同一个人发明的而已。

我们可以想象有两个人在赛跑,如果一个人的速度比另外一个人快,那么他们一定会相遇,并且跑的距离差一定是圈长,但是因为并不是每个时刻都会检查,所以可能要快的人超了慢的人几圈了我们才会发现。

那么现在,这个思想也可以应用于判环,取 a = f ( 1 ) a=f(1) a=f(1),取 b = f ( f ( 1 ) ) b=f(f(1)) b=f(f(1)),那么这样就可以将 b b b 看作 a a a 的两倍速度,这样只需要判断 a a a 是否等于 b b b 就可以判断是否进入环了,如果进入环了也没找到,则可以重新随机 c c c 继续找。

另外, b − a b-a ba 可以看作差值,因为上一步我们证明了如果 a ≡ b ( m o d p ) a\equiv b \pmod p ab(modp),则有 f ( a ) ≡ f ( b ) ( m o d p ) f(a)\equiv f(b)\pmod p f(a)f(b)(modp),所以我们想要 gcd ⁡ ( ∣ x i − x j ∣ , n ) > 1 \gcd(|x_i-x_j|,n)>1 gcd(xixj,n)>1,实际需要验证的 i , j i,j i,j 的范围是可以缩小的,也就是 ∣ i − j ∣   m o d   n |i-j|\bmod n ijmodn 相同的所有组,我们只需要验证一组即可,因为 b b b 的速度要快 a a a 一倍,在相遇之前我们每次都是在判断一个不同的 ∣ i − j ∣ b m o d n |i-j|bmod n ijbmodn,又因为只会存在 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41) 个不同的数字,那么期望在 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41) 检查到环。

这样,我们就避免了需要两两相减,逐一判断导致复杂度退化回去的尴尬情况,而是判断 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41) 次,减少了大部分 ∣ i − j ∣   m o d   n |i-j|\bmod n ijmodn 相同的情况的检验。

但是复杂度依然不是 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41),因为每次检查求 gcd ⁡ \gcd gcd 的过程都需要一个 log ⁡ n \log n logn

尽管已经很快了,但是我们需要追求极限,不是吗?

Step.6 积累的力量

假如 gcd ⁡ ( x , n ) > 1 \gcd(x,n)>1 gcd(x,n)>1,那么 gcd ⁡ ( k x , n ) > 1 \gcd(kx,n)>1 gcd(kx,n)>1 所以我们找到一个 ∣ x a − x b ∣ |x_a-x_b| xaxb 可以不必立马检验,而是积累一会儿,再一起检查。

选择的数量一般为 127 127 127,有些时候需要看实际情况进行调整,但一般都是 2 k − 1 2^k-1 2k1 比较优,具体原因我也不太清楚,大概是经验。

那么在有了积累,我们的复杂度就可以成功地降到 O ( n 1 4 ) O(n^{\frac 1 4}) O(n41),但实际上的复杂度要低很多。

Step.7 一些细节

因为 Pollard-Rho 不具备检查是否为质数的能力,如果用一个质数一直去尝试寻找因子,那么就会一直找不到,所以还需要判断素数,可以使用 Miller Rabin 快速判断,并且可能一次 Pollard-Rho 也找不到,所以这种情况可以返回原数,然后重新随机一个 c c c 再次尝试。

下面给出代码:

inline long long f(long long x,long long c,long long n){return ((lll)x*x+c)%n;}//随机数生成方法,lll转换位__int128防止溢出
inline long long pollard_rho(long long x)
{
	long long c=rand()%(x-1)+1,a=0,b=0,mul=1;
	do
	{
		for(long long i=1;i<128;++i)//累计127次
		{
			a=f(a),b=f(f(b)),mul=(lll)mul*abs(a-b)%x;
			if(a==b||!mul) break;//如果相等或者累乘出现0则代表遇到环,应该推出
		}
		long long gcd=__gcd(mul,x);
		if(gcd>1) return gcd;//找到因数了
	}while(a!=b)
	return x;//每找到
}
inline void get_fac(long long x)
{
	if(prime(x)) return;//先判质数
	long long p=x;
	while(p==x) p=pollard_rho(p);//一直找直到找到为止
}

Step.8 例子

P4718 【模板】Pollard-Rho

判断素数可以直接 Miller Rabin 快速判断,然后发现要求的不是一个因子,而是最大的质因子。

可以考虑递归求解。

每次判断 x x x 是不是质数,如果是,就更新答案,如果不是,就使用 Pollard-Rho 找到一个因数 p p p

然后将 x x x 中所有因数 p p p 都除掉,再去递归求解 x x x p p p

inline void sol(long long x)
{
    if(x<=ans||x<2) return;//剪枝,如果小于答案则可以返回了
    if(prime(x)) return ans=max(ans,x),void();//如果是质数,则更新答案
    long long p=x;
    while(p==x) p=PR(x);//找因子
    while(x%p==0) x/=p;//除去因子
    fac(x),fac(p);//递归求解
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值