【学习笔记】Pollard-Rho算法

280 篇文章 1 订阅

前言

第一次打这个题还是 2019 / 9 2019/9 2019/9 的事,当时一直没过。现在才算搞懂一些了。

日子过的真快啊。正贴合了《红楼梦》里的话:真把光阴虚度,岁月空添!

学习资料

这篇题解绝对是最好的一份!看了他的文章,我的文章也就是只剩下一些细节上的补充了。

其实,抛下 A k Ak Ak 的心思,学习本身是充满乐趣的。题解时常会有真知灼见,有真正的通晓者,有那些见多识广的前辈,看他们的文章就让人恍然大悟。有的文章就比较水……

算法解析

算法的目的是,快速找到 n n n 的一个因数。——比试除法 O ( n ) \mathcal O(\sqrt{n}) O(n ) 快得多!

碰运气

随机一个数,看看它是不是 n n n 的因数。这样的正确性极低。

考虑利用 gcd ⁡ \gcd gcd,随机到 n n n 的任一因数的倍数即可。概率确实提升了,但是也没提升多少……

随机序列

考虑一个迭代生成的序列 x i + 1 = ( x i    2 + 1 )   m o d   n x_{i+1}=(x_i^{\;2}+1)\bmod n xi+1=(xi2+1)modn,由于取值有限,必然会出现重复。而一旦出现 x i = x j    ( i < j ) x_i=x_j\;(i<j) xi=xj(i<j),它们 之后的结果是完全相同的,也就是出现了一个 循环节

假设 这个 x i x_i xi 是等概率随机的,根据我们熟知的 生日悖论,循环节与循环节之前的部分,都应该是期望长度 O ( n ) \mathcal O(\sqrt{n}) O(n ) 的。这个在 OI Wiki \text{OI Wiki} OI Wiki 上有讲解:用 1 + x ⩽ e x 1+x\leqslant e^x 1+xex 进行放缩(因为 1 + x 1+x 1+x e x e^x ex 的一条切线)。第 k k k 次不重复的概率是 1 − k − 1 n ⩽ exp ⁡ [ − ( k − 1 ) n ] 1-\frac{k-1}{n}\leqslant \exp\left[{\frac{-(k-1)}{n}}\right] 1nk1exp[n(k1)],那么能够坚持 k k k 步的概率就不超过 exp ⁡ [ − k ( k − 1 ) 2 n ] \exp\left[\frac{-k(k-1)}{2n}\right] exp[2nk(k1)] 。对它积分就可以得到期望。 w o l f r a m a l p h a \rm wolframalpha wolframalpha 告诉我,它是 n π 2 e 8 n erf ⁡ ( 2 k − 1 2 2 n ) \sqrt{\frac{n\pi}{2}}\sqrt[8n]{e}\operatorname{erf}({2k-1\over 2\sqrt{2n}}) 2nπ 8ne erf(22n 2k1),所以就是 n \sqrt{n} n 了。当然,打表也发现期望是 5 4 n \frac{5}{4}\sqrt{n} 45n 左右,与结论相符。

然后,考虑 n n n 的一个质因数 p p p 。如果把递推公式的模数换成 p p p,那么得到的序列 x i ′ = x i   m o d   p x_i'=x_i\bmod p xi=ximodp,就是在原有的 x i x_i xi 基础上再对 p p p 取模。这是显而易见的。所以期望仍然是 O ( p ) \mathcal O(\sqrt{p}) O(p ) 步走进一个循环节。模 p p p 意义下的环,即 x a ≡ x b ( m o d p ) x_a\equiv x_b\pmod{p} xaxb(modp),只要找到它们,就会发现 ( x a − x b ) (x_a-x_b) (xaxb) p p p 的倍数,然后就会找到这个质因数了!

显然 n n n 的最小质因数 p ⩽ n p\leqslant\sqrt{n} pn ,然后环长是 期望 O ( p ) \mathcal O(\sqrt{p}) O(p ) 的,所以复杂度是 期望 O ( n 1 / 4 ) \mathcal O(n^{1/4}) O(n1/4) 的。然而这只是期望啊!

注意:不能使用梅森旋转算法生成序列,因为它不是多项式型变换,两个模 p p p 意义下相同的值 x 1 , x 2 x_1,x_2 x1,x2 的下一个值是可能不同的!所以此时数值会重复,但是并不会构成严格意义上的环,完整的 “环” 长度期望仍然是 O ( n ) \mathcal O(\sqrt{n}) O(n ) 而非 O ( p ) \mathcal O(\sqrt{p}) O(p ) 的!

Floyd \text{Floyd} Floyd 判环

怎么找环?只需要让其中一个以 1 1 1 单位速度前进,另一个以 2 2 2 单位速度前进,二者相遇就是环了。巧妙的是,它同样可以(尽力)保证 x a ≠ x b x_a\ne x_b xa=xb 。如果 x a = x b x_a=x_b xa=xb,那就说明   m o d   \bmod mod n n n   m o d   \bmod mod p p p 意义下的环是等长的!可是那样就永远找不到了,怎么办?

解决方案是,再做一次,调整参数。当然,这种情况是比较少的,毕竟 n \sqrt{n} n p \sqrt{p} p 差挺多的……

积累求 gcd ⁡ \gcd gcd

gcd ⁡ \gcd gcd 是很慢的操作,可以将很多个乘在一起,然后再求一次 gcd ⁡ \gcd gcd

如果累积的太多,就不能立刻得到结果。比如你积累    1 0 6    \sout{\;10^6\;} 106个样本只检测一次

样本数量为 100 ∼ 128 100\sim 128 100128 个时,效率比较高。其实这个 128 128 128 就约略是 2 log ⁡ n 2\log n 2logn,也就是 gcd ⁡ \gcd gcd 的复杂度;这里相当于一个小的分块,做了一个复杂度的平衡。

代码实现

奇妙情况

有一种很奇妙的情况:积累的样本的乘积是 n n n 的倍数。不妨设它是 a × b a\times b a×b 导致的。由于 b ∈ [ 1 , n ) b\in[1,n) b[1,n),并且这是第一次出现(即 1 ⩽ a < n 1\leqslant a<n 1a<n 成立),只有可能是 a , b a,b a,b 都与 n n n 不互质。

那么直接 b r e a k \tt break break a a a 去得到答案就行了。

示例代码

#include <cstdio> // XJX yyds!!!
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <vector>
#include <random>
using namespace std;
# define rep(i,a,b) for(int i=(a); i<=(b); ++i)
# define drep(i,a,b) for(int i=(a); i>=(b); --i)
typedef long long llong;
inline int readint(){
	int a = 0, c = getchar(), f = 1;
	for(; !isdigit(c); c=getchar())
		if(c == '-') f = -f;
	for(; isdigit(c); c=getchar())
		a = (a<<3)+(a<<1)+(c^48);
	return a*f;
}
void writeint(int x){
	if(x > 9) writeint(x/10);
	putchar(char((x%10)^48));
}

inline llong modMul(const llong &a,const llong &b,const llong &MOD){
	llong c = a*b-llong((long double)a/MOD*b+1e-8)*MOD;
	return ((c %= MOD) < 0) ? (c+MOD) : c;
}
inline llong qkpow(llong b,llong q,llong MOD){
	llong a = 1; b %= MOD;
	for(; q; q>>=1,b=modMul(b,b,MOD))
		if(q&1) a = modMul(a,b,MOD);
	return a;
}
bool is_prime(const llong &p){
	const static int BASE[] = {2,325,9375,28178,450775,9780504,1795265022};
	llong phi = p-1; int8_t x = 0;
	for(; !(phi&1); phi>>=1,++x);
	for(int i=0; i!=7; ++i){
		if(BASE[i]%p == 0) continue;
		llong v = qkpow(BASE[i],phi,p);
		if(v == 1) continue; // just fine
		for(int8_t j=0; j!=x; ++j){
			llong nxt = modMul(v,v,p);
			if(nxt == 1){
				if(v != p-1) return false;
				v = 1; break; // become 1
			}
			v = nxt; // just square
		}
		if(v != 1) return false;
	}
	return true;
}
inline llong getGcd(llong a,llong b){
	while(b && (a%b)) a %= b, b %= a;
	return b ? b : a;
}

std::mt19937_64 rnd;
llong ans;
void pollard(llong n){
	if(n <= ans) return ; // cut branch
	if((n&(n-1)) == 0) return ;
	if(is_prime(n) == true)
		return void(ans = n);
	__bad_luck:
	llong c = rnd()%(n-3)+3, d = 1;
	llong x = rnd()&INT_MAX, y = (x*x+c)%n;
	for(const int w=64; d==1&&x!=y; ){
		llong now = 1, tmp;
		for(int i=0; i!=w&&x!=y; ++i){
			tmp = modMul(now,y-x,n);
			if(tmp != 0) now = tmp;
			else break; // we found it!
			x = (modMul(x,x,n)+c)%n;
			y = (modMul(y,y,n)+c)%n;
			y = (modMul(y,y,n)+c)%n;
		}
		d = getGcd(n,now);
	}
	if(d == 1) goto __bad_luck;
	while(n%d == 0) n /= d;
	return pollard(n), pollard(d);
}

int main(){
	llong n;
	for(int T=readint(); T; --T){
		scanf("%lld",&n);
		if(is_prime(n)) puts("Prime");
		else ans = ((n&1)^1)<<1, pollard(n), printf("%lld\n",ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值