构建并评价聚类模型
- 使用sklearn估计器构建聚类模型(cluster提供聚类算法)
#使用sklearn 估计器构建K-Means 聚类模型
from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
iris=load_iris()
iris_data=iris['data'] #提取数据集中的特征
iris_target=iris['target'] #提取数据集中的标签
iris_names=iris['feature_names'] #提取特征名
scale=MinMaxScaler().fit(iris_data) #训练规则
iris_dataScale=scale.transform(iris_data) #应用规则
kmeans=KMeans(n_clusters=3,random_state=123).fit(iris_dataScale)#构建并训练模型
print('构建的K-Means模型为:\n',kmeans)
#预测结果
result=kmeans.predict([[1.5,1.5,1.5,11.5]])
print('花瓣花萼长度宽度全为1.5的花预测类别为:',result[0])
使用TSNE函数对以上结果做可视化
#聚类结果可视化
import pandas as pd
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
#使用TSNE 进行数据降维,降成两维
tsne=TSNE(n_components=2,init='ra