使用scikit-learn构建模型——构建并评价聚类模型

构建并评价聚类模型

  1. 使用sklearn估计器构建聚类模型(cluster提供聚类算法)
#使用sklearn 估计器构建K-Means 聚类模型
from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
iris=load_iris()
iris_data=iris['data'] #提取数据集中的特征
iris_target=iris['target'] #提取数据集中的标签
iris_names=iris['feature_names'] #提取特征名
scale=MinMaxScaler().fit(iris_data) #训练规则
iris_dataScale=scale.transform(iris_data) #应用规则
kmeans=KMeans(n_clusters=3,random_state=123).fit(iris_dataScale)#构建并训练模型
print('构建的K-Means模型为:\n',kmeans)
#预测结果
result=kmeans.predict([[1.5,1.5,1.5,11.5]])
print('花瓣花萼长度宽度全为1.5的花预测类别为:',result[0])
使用TSNE函数对以上结果做可视化
#聚类结果可视化
import pandas as pd
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
#使用TSNE 进行数据降维,降成两维
tsne=TSNE(n_components=2,init='ra
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Big-Winda

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值