# poj 1074 Parallel Expectations

则可以推出，T[ i ][ j ] = (T[ i-1 ][ j ]*P1+T[ i ][ j-1 ]*P2)/(P1+P2) 不过需要注意几点：
1.理解题意很重要，这个题很容易误解 。
如果认为每种指令执行的情况是一样的话，就会求错方程：(设N[ i ][ j ]为状态T[ i ][ j ]数量 )
P1 = N[ i-1 ][ j ]/N[ i ][ j ]
P2 = N[ i ][ j-1 ]/N[ i ][ j ]
下面是POJ discuss 里得解释，看了这个就会明白了。
Example :
Exactly one execution of the sample input results in S=8, and the
probability of that execution is not 1/C(8,4)=1/70, but (1/2)^4=1/16,
since the program automatically execute remaining operations.
It is true that there are 70 different executions, but not all of
them have the same probability.
正确的概率计算为：(设N1为程序1指令总条数，N2为程序2指令总条数 )
if ( i == N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]
if ( i  < N1 && j == N2 ) P1 = P[ i-1 ][ j ]  ,P2 = P[ i ][ j-1 ]/2
if ( i == N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]
if ( i  < N1 && j  < N2 ) P1 = P[ i-1 ][ j ]/2,P2 = P[ i ][ j-1 ]/2
P[ i ][ j ] = P1 + P2

#include<string.h>
#include<iostream>
#include<sstream>
#include<string>
#include<stdio.h>
#include<map>
using namespace std;
int l[2],n;
string v1[30][2],v2[30][2],v3[30][2];//存储变量
char op[30][2];//存储操作符
int n1[30][2],n2[30][2],n3[30][2];//存储常量
map<string,int>mp;//hash
struct node
{
double t[12];
double r[2][2];
double p;
void init()
{
memset(t,0,sizeof(t));
memset(r,0,sizeof(r));
p=1.0;
}
void run(int id,int o)
{
int V1,V2,V3;
double u1,u2;
V1=mp[v1[(o-1)/4][id]];
V2=mp[v2[(o-1)/4][id]];
V3=mp[v3[(o-1)/4][id]];
if(V1)
u1=t[V1];
else
u1=n1[(o-1)/4][id];
if(V2)
u2=t[V2];
else
u2=n2[(o-1)/4][id];
switch(o%4)
{
case 1:r[0][id]=u1;break;
case 2:r[1][id]=u2;break;
case 3:
if(op[(o-1)/4][id]=='+')
r[0][id]=r[0][id]+r[1][id];
else
r[0][id]=r[0][id]-r[1][id];break;
case 0:t[V3]=r[0][id];break;
}

}
}dp[125][125];
bool check(string s,int &a)//读取常量
{
if(s[0]-'0'>=0&&s[0]-'0'<=9)
{
istringstream sin(s);
sin>>a;
return 0;
}
return 1;
}
void solve()
{
int i,j,k,k1,k2;
double p1,p2,p;
node f1,f2;
dp[0][0].init();
for(i=0;i<=l[0];i++)
for(j=0;j<=l[1];j++)
{
if(i|j)
{
if(i==0)
{
f1=dp[i][j-1];
p1=f1.p*0.5;p2=0;
f1.run(1,j);
}
else if(j==0)
{
f2=dp[i-1][j];
p2=f2.p*0.5;
p1=0;
f2.run(0,i);
}
else
{
f1=dp[i][j-1];
f2=dp[i-1][j];
p1=f1.p*(i==l[0]?1:0.5);
p2=f2.p*(j==l[1]?1:0.5);
f1.run(1,j);
f2.run(0,i);
}
dp[i][j].p=p=p1+p2;
for(k=1;k<=n;k++)
{
dp[i][j].t[k]=(f1.t[k]*p1+f2.t[k]*p2)/p;
}

for(k1=0;k1<=1;k1++)
for(k2=0;k2<=1;k2++)
{
dp[i][j].r[k1][k2]=(f1.r[k1][k2]*p1+f2.r[k1][k2]*p2)/p;
}
}
}
for(i=1;i<=n;i++)
printf("%.4lf\n",dp[l[0]][l[1]].t[i]);
printf("\n");
}
int main()
{
int ti,i,j;
char ch;
string str;
scanf("%d",&ti);
while (cin.peek()=='\n')
getchar();
while(ti--)
{
mp.clear();
for(i=0;i<=1;i++)
{
while(cin.peek()=='\n')//吸收多余空行
getchar();
for(j=0;1;j++)
{
v1[j][i]=v2[j][i]=v3[j][i]="";
n1[j][i]=n2[j][i]=n3[j][i]=0;
while(cin.peek()!=':'&&cin.peek()!='\n')
{
ch=getchar();
if(ch!=' ')
v3[j][i]+=toupper(ch);
}
if(v3[j][i]=="END")
break;
if(check(v3[j][i],n3[j][i])==1)
mp[v3[j][i]]++;
for(ch=getchar();cin.peek()==' ';)
ch=getchar();
for(ch=getchar();cin.peek()==' ';)
ch=getchar();
while(cin.peek()!='+'&&cin.peek()!='-')
{
ch=getchar();
if(ch!=' ')
v1[j][i]+=toupper(ch);
}
if(check(v1[j][i],n1[j][i])==1)
mp[v1[j][i]]++;
scanf("%c",&op[j][i]);
for(;cin.peek()==' ';)
ch=getchar();
while(cin.peek()!=' '&&cin.peek()!='\n')
{
ch=getchar();
if(ch!=' ')
v2[j][i]+=toupper(ch);
}
if(check(v2[j][i],n2[j][i])==1)
mp[v2[j][i]]++;
while(cin.peek()==' ')
ch=getchar();
while(cin.peek()=='\n')
getchar();
}
l[i]=j*4;
}
map<string,int>::iterator it=mp.begin();//map内部已排序
for(i=1;it!=mp.end();i++,it++)
mp[it->first]=i;
n=i-1;
solve();
}
}


05-09 528

10-09 1158

08-03 1277

02-07 121

08-17 117

02-07 622

05-07 202

11-24 32

04-03 189

11-09 28.6万