39. 组合总和
给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的数字可以无限制重复被选取。
这道题与之前不同的是,我们可以考虑重复的数。
什么时候需要startindex?
如果是一个集合来求组合的话,就需要startIndex;如果是多个集合取组合,各个集合之间相互不影响,那么就不用。
class Solution {
public:
vector<vector<int>> result;
vector<int> res;
void backtracking(vector<int>& candidates, int target, int sum, int startindex){
if(sum>target){
return;
}
if(sum==target){
result.push_back(res);
return;
}
for(int i=startindex; i<candidates.size(); i++){ //candidates[0]到[size-1]
sum+=candidates[i];
res.push_back(candidates[i]);
backtracking(candidates, target, sum, i);
res.pop_back();
sum-=candidates[i];
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
res.clear();
backtracking(candidates, target, 0, 0);//要从0开始
return result;
}
};
剪枝的过程:
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
大于target了以后,直接不遍历。
- 时间复杂度: O(n * 2^n),注意这只是复杂度的上界,因为剪枝的存在,真实的时间复杂度远小于此
- 空间复杂度: O(target)
40.组合总和II
给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。candidates 中的每个数字在每个组合中只能使用一次。
与上一道题的区别是,这道题的candidates中每个数字在每个组合中只能使用一次。且数字是有重复的。
本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合。
元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。
我们多加了一个used数组。
vector<bool> used(candidates.size(), false);
如果candidates[i] == candidates[i - 1]
并且 used[i - 1] == false
,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used){
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex; i<candidates.size()&&sum+candidates[i]<=target; i++){
if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false){
continue;
}
sum+=candidates[i];
path.push_back(candidates[i]);
used[i] = true;
backtracking(candidates, target, sum, i+1, used);
used[i] = false;
sum -= candidates[i];
path.pop_back();
}
}
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool> used(candidates.size(), false);
path.clear();
result.clear();
sort(candidates.begin(), candidates.end());
backtracking(candidates, target, 0, 0, used);
return result;
}
};
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n)
131.分割回文串
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
使用双指针法,判断回文串。
class Solution {
public:
vector<vector<string>> result;
vector<string> path;
bool IsPalindrome(string& s, int start, int end){
int back=end, front=start;
for(; front<back; front++, back--){
if(s[front]!=s[back]){
return false;
}
}
return true;
}
//一个集合来求组合的话,就需要startIndex
void backtracking(string& s, int startindex){
if(startindex>=s.size()){
result.push_back(path);
return;
}
for(int i=startindex; i<s.size(); i++){
if(IsPalindrome(s, startindex, i)){
path.push_back(s.substr(startindex, i-startindex+1));
}else{
continue;//如果不满足直接跳过这个i,到下一个i
}
backtracking(s, i+1);
path.pop_back();
}
}
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
backtracking(s, 0);
return result;
}
};
- 时间复杂度: O(n * 2^n)
- 空间复杂度: O(n^2)
注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1.