计网性能的评价指标:
- 速率
这里只强调一个小问题,即在速率的单位里 M b / s , G b / s Mb/s,Gb/s Mb/s,Gb/s都是以十为底数的,即 1 M b / s = 1 0 3 k b / s 1Mb/s=10^3kb/s 1Mb/s=103kb/s,而在存储单位里,我们一般用的都是字节( B B B)来表示,但是有时也可能会见到用比特来表示的,这里就要注意,此时则是以二为底数的. 1 M B = 2 20 B = 2 23 b 1MB=2^{20}B=2^{23}b 1MB=220B=223b. - 带宽
在计算机网络中,是最高数据传输率的同义词 - 吞吐量
单位时间通过某个网络的实际数据量. - 时延
总时延一般包括:发送时延+传播时延+处理时延+排队时延.而我们在计算中,常常需要讨论的则是发送时延和传播时延.
发送时延: 分组长度 / 发送速率 分组长度/发送速率 分组长度/发送速率.
传播时延: 信道长度 / 电磁波的传播速率 信道长度/电磁波的传播速率 信道长度/电磁波的传播速率.
处理时延和排队时延需要题目中给出具体语境,一般不讨论. - 时延宽带积
表示接收端收到第一个比特时,发送端已经发出了多少比特,计算方法: 传播时延 × 带宽 传播时延×带宽 传播时延×带宽. - 往返时延
R
T
T
RTT
RTT
讨论往返时延的终点,则是发送方发出分组起,到收到接收端的确认的时延. - 信道利用率
信道上有数据流过的时间占总时间的比例: 有数据流过的时间 / ( 有 + 无的时间 ) 有数据流过的时间/(有+无的时间) 有数据流过的时间/(有+无的时间).
这里其它的计算都比较容易,这里主要讨论其中一种计算,就是分组转发的流水线问题.
我们以2010年408统考34题为例:
做这种题思路很多,个人倾向于一种很笨但很直观的方法.本题一共
1000
1000
1000个分组,一个分组的发送时延为
0.08
m
s
0.08ms
0.08ms,不考虑传播时延.只考虑第一个分组,当第一个分组从
H
1
H1
H1发送到第一个路由器时,此时已经经过了一个发送时延,然后路由器转发给下一个路由器,又经过了一个发送时延,最后由第二个路由器发送给主机
H
2
H2
H2,此时又是一个发送时延,这意味着,主机
H
2
H2
H2收到第一个分组时,已经经过了三个发送时延.这时再考虑发送过程是连续的,也就是说,经过这三个发送时延,已经有三个分组被发出了,这也就意味着,接下来每经过一个发送时延就会收到一个分组.所以用时最少为:收到第一个分组的时间
3
×
0.08
=
0.24
m
s
3×0.08=0.24ms
3×0.08=0.24ms;收完接下来的
999
999
999个分组用的时间:
999
×
0.08
=
79.92
m
s
999×0.08=79.92ms
999×0.08=79.92ms.共计
80.16
m
s
80.16ms
80.16ms.
曼彻斯特编码的问题:
曼彻斯特编码的编码速率是码元速率的两倍,频带宽度是基带宽度的两倍.
个人理解,码元速率=信号变化速率,在一个周期内,信号发生了几次变化,那么一个周期就有几个码元,所以在曼彻斯特编码里,一个曼彻斯特的码元应该包括了半个比特位的信息.
这里说一下,归零编码的一个周期长度是码元传输时间+用于实现时钟同步的时间,它只是传完了数据以后电平归零,并不是发生了两次电平跳变.
奈奎斯特定理(奈氏准则):
在理想的带宽有限且无噪声(低通信道)的信道中,若信道的带宽为
W
(
H
z
)
W(Hz)
W(Hz),码元最大传输速率不会超过
2
W
(
码元
/
秒
)
2W(码元/秒)
2W(码元/秒),在传输速率之下,不会出现码间串扰(两个码元失去界限导致无法识别)问题.
若一个码元中含有
V
V
V个
b
i
t
bit
bit,那么上式还可以改写成
2
W
l
o
g
2
(
V
)
(
b
i
t
/
s
)
2Wlog_2(V) (bit/s)
2Wlog2(V)(bit/s).
香农定理:
在现实环境中,所有信道都是有噪声的,香农定理给出的就是在有噪声的信道中的数据极限传输速率,设信道的带宽为
W
W
W,传输信号的平均功率为
S
S
S,噪声的平均功率为
N
N
N,信噪比记为
S
/
N
S/N
S/N,那么数据的最大传输速率为:
C
=
W
l
o
g
2
(
1
+
S
/
N
)
(
b
i
t
/
s
)
C=Wlog_2(1+S/N)(bit/s)
C=Wlog2(1+S/N)(bit/s).
这两个定理的虽然都是在讨论信道的极限传输速率,但事实上,它们侧重的方向完全不同.在奈氏准则中,我们知道只要带宽不变,码元的极限传输速率就是固定的.所以若是想要提高信息传输速率,就要让一个码元尽可能携带更多的信息,即含有更多比特位.
而香农定理则表明了,一个信道的数据传输速率取决于信噪比和带宽,即便编码技术再高级,也不可能突破这个上限.个人不严谨的理解:若是只在奈氏准则的视角下看,只要增加一个码元包括的比特位,信息传输速率就势必会跟着增加.但是在香农定理视角下看,一个码元所用比特位越多,说明这个码元的种类越多,译码难度就会大大增加,原来只需要翻译两种波形,而现在可能要翻译 64 64 64种, 128 128 128种甚至更多种波形,这就会导致从各种噪声中分辨这些波形变得非常困难,所以会影响信噪比,从而导致速率的下降.
在上述观点下,我们不难看出,无论什么信道,其最大传输速率都受制于香农定理和奈氏准则,所以当题目给出信噪比,带宽,以及码元位数时,要同时考虑这两个定理的约束,取最小者.
奈奎斯特采样定理:
这个定理是将模拟数据编码为数字信号所要遵循的定理.即若模拟信号的最大频率为
f
f
f,那么采样频率应该满足
f
采样
≥
2
f
f_{采样}\geq 2f
f采样≥2f.
一个信道每 1 / 8 s 1/8s 1/8s采样一次,传输信号 16 16 16种状态,求最大传输速率?
这个题在看王道书的解析时,看的一头雾水,采样频率 8 H z 8Hz 8Hz, 16 16 16种状态对应 4 4 4个二进制位,然后最大传输速率就是 8 × 4 = 32 b / s 8×4=32b/s 8×4=32b/s.这样计算显然并没有说明白这里的核心问题,即这个最大传输速率.问题就出在奈奎斯特采样定理上,注意这里的采样频率是 8 H z 8Hz 8Hz,显然原来信号的频率不会超过 4 H z 4Hz 4Hz,取最大为 4 H z 4Hz 4Hz,考虑到题干并没有明确指出信噪比,那么我们所能用的计算方式只有奈氏准则,且既然要考虑最大速率的问题,在无噪声的条件下也是很自然的一件事情.如此我们便可以用奈氏准则算出最大码元率为 2 W = 8 B a u d 2W=8Baud 2W=8Baud.此时再用一个波特包含四个比特位,即算出最终的数据传输速率: 8 B a u d × 4 b i t = 32 b i t / s 8Baud×4bit=32bit/s 8Baud×4bit=32bit/s.