NLP技术在搜索推荐场景中的应用

本文探讨了NLP技术如何通过增强CTR预测准确性、改善搜索相关性判断和优化推荐系统效果,在搜索推荐场景中发挥关键作用。具体介绍了微软必应和京东的研究工作,展示了BERT和DNN模型在广告CTR预测、电商搜索相关性和推荐系统中的应用策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP技术在搜索推荐中的应用非常广泛,例如在搜索广告的CTR预估模型中,NLP技术可以从语义角度提取一些对CTR预测有效的信息;在搜索场景中,也经常需要使用NLP技术确定展现的物料与搜索query的相关性,过滤掉相关性较差的物料,防止对用户体验造成负面影响。在推荐场景中,文本信息也可以作为一种泛化性较强的信息补充,弥补协同过滤信号的稀疏性问题,提升预测效果。

今天这篇文章梳理了NLP技术在搜索推荐场景中3个方面的应用,分别是NLP提升CTR预估效果、NLP解决搜索场景相关性问题、NLP信息优化基于推荐系统效果。

1 NLP特征提升CTR预估效果

Learning Supplementary NLP Features for CTR Prediction in Sponsored Search(KDD 2022)是微软必应团队在近年KDD上发表的一篇工作,主要介绍了如何利用NLP特征提升CTR预估的效果。这篇工作的应用场景是必应的搜索广告,需要对给定搜索词下不同的广告document进行CTR预测,并根据预测的CTR进行排序。

业内一般使用NLP特征的方法是,使用预训练的BERT模型,给当前query和document对进行相关性打分,将这个打分作为一维特征输入到CTR预估模型中。然而文中指出,这种应用NLP特征的方法并不是最优的。本文提出了一种BERT和CTR预估模型联合训练的方式,让BERT提取的语义特征和CTR预估任务更加契合。

基础的模型结构如下图,左侧是位置特征和CTR预估的其他特征(如user、context特征等),右侧是语义特征,使用预训练的BERT,以query和ad文本作为输入,得到query和ad匹配的向量。CTR预估的向量和BERT生成的向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WitsMakeMen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值