大型甲醇气化车间炉体表面温度巡检及巡检数据的 AI 分析

摘要

        大型甲醇气化车间的安全稳定运行对整个化工生产过程至关重要,炉体作为核心设备,其表面温度的有效监测意义重大。本文首先阐述了大型甲醇气化车间炉体表面温度巡检的传统方式及其局限性,进而详细介绍了引入红外线热成像仪等先进设备构建的自动化巡检系统,该系统可实现对炉体表面温度的全面、实时监测。同时,深入探讨了利用 AI 技术对巡检数据进行分析的方法,包括数据预处理、特征提取与选择以及构建合适的 AI 模型(如基于深度学习的神经网络模型)。通过 AI 分析能够及时发现炉体表面温度异常,预测潜在故障,为气化车间的安全运行提供有力保障,显著提升生产效率与安全性,对化工行业的智能化发展具有重要的参考价值。

关键词

甲醇气化车间;炉体表面温度;巡检;AI 分析

一、引言

        在大型甲醇生产过程中,气化车间的炉体是实现煤炭等原料气化反应的关键设备。炉体运行状况直接影响到甲醇的产量与质量,其表面温度是反映炉体内部工况的重要参数。一旦炉体表面温度出现异常,可能预示着炉内耐火材料损坏、反应不均匀等问题,若不及时处理,极有可能引发严重的生产事故,造成巨大的经济损失与安全风险。传统的炉体表面温度巡检方式主要依赖人工定期巡检,使用单点接触式测温仪进行测量,这种方式不仅效率低下、劳动强度大,而且由于测量点数有限,难以全面掌握炉体表面温度分布情况,容易遗漏潜在的温度异常区域。随着科技的不断发展,自动化巡检技术与 AI 数据分析技术为解决这些问题提供了新的思路与方法。将先进的传感器技术与智能算法应用于炉体表面温度巡检,能够实现对炉体的全方位、实时监测与精准分析,有效提升大型甲醇气化车间的生产安全性与稳定性。

二、大型甲醇气化车间炉体表面温度巡检现状

2.1 传统巡检方式

          传统的大型甲醇气化车间炉体表面温度巡检主要依靠人工操作。巡检人员按照既定的巡检路线,手持接触式温度测量仪(如热电偶温度计、热电阻温度计等),在炉体表面的预设测量点进行温度测量。这些测量点通常是根据经验选取,分布在炉体的关键部位,如炉顶、炉壁的不同高度位置以及进出口附近等。巡检人员记录下每个测量点的温度数据,然后将数据带回进行人工整理与分析。这种巡检方式存在诸多弊端。首先,人工巡检的频率相对较低,难以做到实时监测炉体温度变化。在两次巡检间隔期间,如果炉体表面温度发生突然变化,可能无法及时察觉。其次,人工操作容易受到巡检人员主观因素的影响,例如测量手法的差异可能导致测量数据存在一定误差。而且,人工巡检劳动强度大,长时间的重复性工作容易使巡检人员产生疲劳,进一步影响巡检质量。此外,由于受到人力和时间的限制,人工巡检只能测量有限数量的点,无法全面覆盖炉体表面,对于炉体大面积区域的温度分布情况缺乏有效的监测手段,难以发现测量点之间可能存在的温度异常区域。

2.2 现有自动化巡检尝试

        为了克服传统人工巡检的不足,一些企业已经开始尝试采用自动化巡检技术。其中较为常见的是在炉体表面安装固定的温度传感器,如热电偶或热电阻传感器。这些传感器按照一定的间隔和布局安装在炉体表面,能够实时测量所在位置的温度,并将温度数据通过有线或无线传输方式发送至数据采集系统。数据采集系统对传感器传来的数据进行汇总与存储,操作人员可以通过监控终端查看炉体表面各测量点的实时温度。这种方式相比人工巡检,提高了数据采集的频率与实时性,能够及时发现测量点处的温度异常。然而,它也存在局限性。固定安装的传感器只能测量其所在位置的温度,对于传感器之间的区域仍然无法有效监测,炉体表面温度监测存在盲区。此外,传感器的数量和安装位置一旦确定,后期调整较为困难,如果需要增加监测区域或改变监测重点,往往需要重新布线和安装传感器,成本较高且实施过程复杂。

三、新型炉体表面温度巡检系统构建

3.1 红外线热成像仪的应用

        为了实现对大型甲醇气化车间炉体表面温度的全面、实时监测,引入红外线热成像仪是一种有效的解决方案。红外线热成像仪能够检测物体表面发出的红外线辐射,并将其转化为可视化的热图像,通过热图像可以直观地观察到物体表面的温度分布情况。在大型甲醇气化车间炉体表面温度巡检中,可在炉体周围合适位置安装多个红外线热成像仪,使其能够覆盖炉体的各个表面区域。例如,在炉体的上方、侧面不同高度位置以及底部等关键视角设置热成像仪。通过合理调整热成像仪的安装角度和位置,确保能够获取炉体表面完整的热图像信息。红外线热成像仪具有诸多优势。首先,它能够实现非接触式测量,避免了传统接触式测温方法对炉体表面的损伤以及因接触不良导致的测量误差。其次,热成像仪可以快速获取大面积区域的温度分布,无需像传统方式那样逐点测量,大大提高了巡检效率。此外,热成像仪的测量精度较高,能够检测到微小的温度变化,有助于及时发现炉体表面潜在的温度异常点。通过对热图像的分析,还可以直观地观察到炉体表面温度的变化趋势,为进一步的数据分析与故障诊断提供丰富的信息。

3.2 巡检系统的架构设计

        基于红外线热成像仪构建的炉体表面温度巡检系统,其架构主要包括数据采集层、数据传输层、数据处理与存储层以及用户交互层。在数据采集层,多个红外线热成像仪实时采集炉体表面的热图像数据。这些热成像仪具备高分辨率和宽测温范围,能够适应大型甲醇气化车间炉体的高温环境以及对温度测量精度的要求。为了确保数据采集的准确性和稳定性,热成像仪应具备良好的抗干扰能力,并定期进行校准。数据传输层负责将热成像仪采集到的数据快速、可靠地传输至数据处理与存储层。可采用有线网络(如以太网)和无线网络(如 Wi-Fi、5G 等)相结合的方式进行数据传输。对于距离数据处理中心较近且布线方便的热成像仪,优先采用有线网络连接,以保证数据传输的稳定性和高速率。对于一些安装位置较为偏远或布线困难的热成像仪,则使用无线网络进行数据传输。在数据传输过程中,采用加密技术对数据进行加密,防止数据泄露与篡改,确保数据的安全性。数据处理与存储层是整个巡检系统的核心部分。在这一层,首先对采集到的热图像数据进行预处理,包括图像去噪、增强等操作,以提高图像质量,便于后续的温度分析。然后,利用专门的图像处理算法从热图像中提取炉体表面各区域的温度信息,并将温度数据与对应的位置信息进行关联存储。可采用数据库(如 MySQL、MongoDB 等)对大量的温度数据进行存储,以便后续的数据查询与分析。同时,在数据处理与存储层还可以部署数据备份与恢复机制,防止因硬件故障或其他原因导致的数据丢失。用户交互层为操作人员和管理人员提供了与巡检系统进行交互的界面。通过监控终端(如电脑、平板电脑等),用户可以实时查看炉体表面的温度分布热图像以及各区域的具体温度数据。用户还可以根据需要对温度数据进行查询、统计分析,生成温度变化趋势曲线等报表。当系统检测到炉体表面温度异常时,用户交互层能够及时发出声光报警,并将异常信息通过短信、邮件等方式推送至相关人员,以便及时采取措施进行处理。

四、巡检数据的 AI 分析方法

4.1 数据预处理

        从红外线热成像仪采集到的炉体表面温度数据在进行 AI 分析之前,需要进行预处理。首先是数据清洗,由于在实际生产环境中,可能存在噪声干扰、设备故障等原因导致采集到的数据出现错误或异常值。通过数据清洗算法,识别并去除这些错误数据和异常值,保证数据的准确性。例如,可以设定温度数据的合理范围,对于超出该范围的数据进行标记和检查,若确认是错误数据则将其删除或进行修正。其次是数据归一化,由于不同区域的炉体表面温度可能存在较大差异,为了使数据在同一尺度上进行分析,需要对温度数据进行归一化处理。将温度数据映射到一个特定的区间(如 [0, 1]),这样可以加快 AI 模型的收敛速度,提高模型的训练效率和准确性。另外,对于热图像数据,还需要进行图像增强处理,通过调整图像的亮度、对比度、色彩等参数,突出热图像中的温度特征,便于后续的特征提取。

4.2 特征提取与选择

        在经过预处理的数据基础上,进行特征提取与选择。对于炉体表面温度数据,可提取的特征包括温度均值、方差、最大值、最小值、温度变化率等统计特征。这些特征能够从不同角度反映炉体表面温度的分布情况和变化趋势。例如,温度均值可以反映炉体表面的整体温度水平,方差则可以体现温度分布的离散程度,温度变化率能够反映温度随时间的变化快慢。此外,还可以利用图像处理技术从热图像中提取空间特征,如温度异常区域的形状、大小、位置等。通过对这些特征的分析,可以更好地理解炉体表面温度的状态。在特征选择方面,采用合适的算法从提取的众多特征中挑选出对炉体表面温度异常判断最具代表性和相关性的特征。例如,可以使用相关性分析算法计算每个特征与温度异常之间的相关性系数,选择相关性较高的特征作为模型输入。这样可以减少模型的输入维度,降低模型的复杂度,提高模型的训练速度和预测准确性,同时避免因过多无关特征导致的过拟合问题。

4.3 AI 模型构建与训练

        基于提取和选择的特征,构建合适的 AI 模型对炉体表面温度数据进行分析。常用的 AI 模型包括基于机器学习的分类模型(如支持向量机、随机森林等)和基于深度学习的神经网络模型(如多层感知机、卷积神经网络等)。以卷积神经网络(CNN)为例,由于其在图像处理方面具有独特的优势,非常适合处理炉体表面温度的热图像数据。CNN 模型由多个卷积层、池化层和全连接层组成。在卷积层中,通过卷积核与热图像进行卷积运算,提取热图像中的局部特征。池化层则对卷积层提取的特征进行下采样,减少特征维度,降低计算量。全连接层将经过卷积和池化处理后的特征进行整合,并通过非线性激活函数进行分类判断。在训练 CNN 模型时,需要准备大量的带有温度异常标注的热图像数据作为训练集。将训练集数据输入到 CNN 模型中,通过不断调整模型的参数(如卷积核的权重、偏置等),使模型能够准确地对热图像中的温度异常情况进行分类。在训练过程中,使用合适的损失函数(如交叉熵损失函数)来衡量模型预测结果与真实标注之间的差异,并通过优化算法(如随机梯度下降算法)不断最小化损失函数,从而使模型的性能得到提升。训练完成后,使用验证集对模型进行评估,确保模型具有良好的泛化能力和预测准确性。

五、AI 分析在炉体温度监测中的应用效果

5.1 温度异常检测

        通过构建的 AI 模型对大型甲醇气化车间炉体表面温度巡检数据进行分析,能够实现高效准确的温度异常检测。在实际生产过程中,当炉体表面某区域的温度出现异常升高或降低时,AI 模型能够迅速捕捉到温度数据的变化特征,并与训练过程中学习到的正常温度模式进行对比分析。一旦判断该区域温度数据偏离正常范围,即判定为温度异常,并及时发出报警信号。与传统的基于阈值判断的温度异常检测方法相比,AI 分析方法具有更高的准确性和可靠性。传统阈值法通常是根据经验设定一个固定的温度阈值,当测量温度超过该阈值时认为出现异常。然而,炉体在不同工况下,正常温度范围可能会有所变化,固定阈值难以适应这种动态变化,容易出现误报或漏报的情况。而 AI 模型通过对大量历史数据的学习,能够自动适应炉体在不同工况下的温度变化规律,更加准确地判断温度异常,大大提高了温度异常检测的精度,为及时发现炉体潜在故障提供了有力保障。

5.2 故障预测

        除了实时检测温度异常,利用 AI 分析巡检数据还可以对炉体可能出现的故障进行预测。通过对炉体表面温度数据的长期监测与分析,AI 模型能够学习到温度变化与炉体内部设备运行状态之间的潜在关联。例如,当炉内耐火材料出现逐渐损坏的趋势时,炉体表面对应区域的温度会逐渐升高,并且温度变化模式也会发生改变。AI 模型可以捕捉到这些细微的温度变化特征及其变化趋势,通过对历史数据中类似温度变化模式与后续炉体故障发生情况的学习,预测炉体在未来一段时间内发生故障的可能性。这种故障预测功能能够使企业在炉体故障发生前采取预防性维护措施,如提前安排设备检修、更换受损部件等,避免因突发故障导致的生产中断,降低维修成本,提高生产的连续性和稳定性,为大型甲醇气化车间的安全、高效运行提供了重要支持。

六、结论与展望

        在大型甲醇气化车间中,对炉体表面温度进行有效巡检及对巡检数据进行精准分析对于保障生产安全与稳定至关重要。北京玉麟科技公司在这个领域进行了有意的探索。通过引入红外线热成像仪构建自动化巡检系统,能够克服传统巡检方式的不足,实现对炉体表面温度的全面、实时监测。利用 AI 技术对巡检数据进行预处理、特征提取与选择,并构建合适的 AI 模型进行分析,能够准确检测温度异常,预测潜在故障,显著提升了炉体温度监测的效率与准确性。然而,目前该技术仍存在一些可改进之处。例如,在复杂生产环境下,AI 模型可能受到多种干扰因素影响,导致模型的泛化能力有待进一步提高。未来,随着传感器技术、AI 算法以及大数据处理技术的不断发展,可进一步优化巡检系统的硬件设备,提高数据采集的精度与稳定性。同时,持续改进 AI 模型,引入更先进的算法(如基于迁移学习、强化学习的算法),使其能够更好地适应复杂多变的生产工况,实现对大型甲醇气化车间炉体表面温度更智能化、精准化的监测与分析,为化工行业的智能化升级提供更有力的技术支撑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值