Incorporating the image formation process into deep learning improves network performance
1. 研究目标与产业意义
1.1 研究目标
论文旨在解决三维荧光显微图像去卷积(3D fluorescence microscopy deconvolution)中传统迭代方法(如Richardson-Lucy Deconvolution, RLD)计算效率低、参数调优复杂,以及纯数据驱动深度学习方法(如CARE、RCAN)泛化性差、参数过多的问题。具体目标包括:
- 融合模型驱动与数据驱动:结合传统RLD的物理模型和深度学习的高效特征学习能力,提升去卷积效果;
- 减少计算开销:设计轻量化网络结构(仅约16,000参数),实现4-50倍的加速;
- 提升轴向分辨率:解决传统方法在低信噪比(SNR)或离焦噪声下的性能退化问题。
1.2 实际意义
在生物医学成像领域,显微图像常因光学系统的点扩散函数(Point Spread Function, PSF)和噪声导致分辨率下降。传统RLD虽被广泛应用,但处理三维或四维(时间序列)数据时计算耗时,且参数调整依赖经验。RLN的提出:
- 加速大样本处理:如小鼠全脑成像(138.3GB数据量)的快速重建;
- 降低数据需求:通过合成数据训练提升泛化性,减少对真实标注数据的依赖;
- 推动自动化分析:为活体细胞动态成像、组织透明化技术(如iDISCO+)提供高效工具。
2. 创新方法:Richardson-Lucy网络(RLN)
2.1 核心思路:算法展开(Algorithm Unrolling)
将传统RLD迭代步骤映射到神经网络层,实现物理模型引导的深度学习。具体而言:
- RLD迭代公式:
E k + 1 = E k ⋅ ( I E k ∗ f ∗ b ) E_{k+1} = E_k \cdot \left( \frac{I}{E_k * f} * b \right) Ek+1=Ek⋅(Ek∗fI∗b)
其中, E k E_k Ek为第 k k k次迭代估计, f f f为前向投影(系统PSF), b b b<