Bloom Filter概念和原理

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter 的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter 不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter 通过极少的错误换取了存储空间的极大节省。

集合表示和元素查询

下面我们具体来看 Bloom Filter 是如何用位数组表示集合的。初始状态时,Bloom Filter 是一个包含 m 位的位数组,每一位都置为0。
在这里插入图片描述
为了表达 S = { x 1 , x 2 , … , x n } S = \{x_1, x_2,…,x_n\} S={x1,x2,,xn} 这样一个 n n n 个元素的集合,Bloom Filter 使用 k k k 个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到 { 1 , … , m } \{1,…,m\} {1,,m} 的范围中。对任意一个元素 x x x ,第 i i i 个哈希函数映射的位置 h i ( x ) h_i(x) hi(x) 就会被置为 1 ( 1 ≤ i ≤ k ) 1 (1 \leq i \leq k) 1(1ik)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。
在这里插入图片描述
在判断 y y y 是否属于这个集合时,我们对 y y y 应用 k k k 次哈希函数,如果所有 h i ( y ) h_i(y) hi(y)的位置都是 1 ( 1 ≤ i ≤ k ) 1 (1 \leq i \leq k) 1(1ik) ,那么我们就认为 y y y 是集合中的元素,否则就认为 y y y 不是集合中的元素。下图中 y 1 y_1 y1 就不是集合中的元素。 y 2 y_2 y2 或者属于这个集合,或者刚好是一个false positive
在这里插入图片描述

错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设 k n < m kn < m kn<m 且各个哈希函数是完全随机的。当集合 S = { x 1 , x 2 , … , x n } S = \{ x_1, x_2,…,x_n\} S={x1,x2,,xn}的所有元素都被 k k k 个哈希函数映射到 m m m 位的位数组中时,这个位数组中某一位还是0的概率是:
p ′ = ( 1 − 1 m ) k n ≈ e − k n / m p' = ( 1 - \frac{1}{m})^{kn} \approx e^{-kn / m} p=(1m1)knekn/m
其中 1 / m 1/m 1/m 表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的), ( 1 − 1 / m ) (1-1/m) (11/m) 表示哈希一次没有选中这一位的概率。要把 S S S 完全映射到位数组中,需要做 k n kn kn 次哈希。某一位还是 0 0 0 意味着 k n kn kn 次哈希都没有选中它,因此这个概率就是 ( 1 − 1 / m ) (1-1/m) (11/m) k n kn kn 次方。令 p ′ = e − k n / m p' = e^{-kn / m} p=ekn/m 是为了简化运算,这里用到了计算e时常用的近似:
lim ⁡ x → ∞ ( 1 − 1 x ) − x = e \displaystyle \lim _{x \to \infty} ( 1 - \frac{1}{x})^{-x} = e xlim(1x1)x=e
ρ \rho ρ 为位数组中0的比例,则 ρ \rho ρ 的数学期望 E ( ρ ) = p ′ E(\rho) = p' E(ρ)=p。在 ρ \rho ρ 已知的情况下,要求的错误率(false positive rate)为:
( 1 − ρ ) k ≈ ( 1 − p ′ ) k ≈ ( 1 − p ) k (1 - \rho)^k \approx (1 - p')^k \approx (1 - p)^k (1ρ)k(1p)k(1p)k

( 1 − ρ ) (1 - \rho ) (1ρ) 为位数组中 1 1 1 的比例, ( 1 − ρ ) k ( 1 - \rho )^k (1ρ)k 就表示 k k k 次哈希都刚好选中 1 1 1 的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。 ρ ′ \rho' ρ 只是 ρ \rho ρ 的数学期望,在实际中 ρ \rho ρ 的值有可能偏离它的数学期望值。M. Mitzenmacher 已经证明1 ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将 p p p p ′ p' p 代入上式中,得:
f ′ = ( 1 − ( 1 − 1 m ) k n ) k = ( 1 − p ′ ) k f' = (1 - (1 - \frac{1}{m})^{kn})^k = (1 - p')^k f=(1(1m1)kn)k=(1p)k
f = ( 1 − e − k n / m ) k = ( 1 − p ) k f = (1 - e^{-kn/m})^k = (1 -p)^k f=(1ekn/m)k=(1p)k
相比 p ′ p' p f ′ f' f,使用 p p p f f f 通常在分析中更为方便。

最优的哈希函数个数

既然 Bloom Filter 要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到0的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用 p p p f f f 进行计算。注意到 f = ( 1 − e − k n / m ) k = e x p ( k ln ⁡ ( 1 − e − k n / m ) ) f = (1 - e^{-kn/m})^k = exp( k \ln(1 − e^{−kn/m}) ) f=(1ekn/m)k=exp(kln(1ekn/m)),我们令 g = k ln ⁡ ( 1 − e − k n / m ) g = k \ln(1 − e^{−kn/m}) g=kln(1ekn/m),只要让 g g g 取到最小, f f f 自然也取到最小。由于 p = e − k n / m p = e^{-kn/m} p=ekn/m,我们可以将 g g g 写成
g = − m n ln ⁡ ( p ) ln ⁡ ( 1 − p ) g = - \frac{m}{n} \ln(p) \ln(1 - p) g=nmln(p)ln(1p)
根据对称性法则可以很容易看出当 p = 1 2 p = \frac{1}{2} p=21,也就是 k = m n ln ⁡ 2 k = \frac{m}{n} \ln2 k=nmln2 时, g g g 取得最小值。在这种情况下,最小错误率 f f f 等于 ( 1 / 2 ) k ≈ ( 0.6185 ) m / n (1/2)^k \approx (0.6185)^{m / n} (1/2)k(0.6185)m/n。另外,注意到 p p p 是位数组中某一位仍是 0 的概率,所以 p = 1 / 2 p = 1/2 p=1/2 对应着位数组中 0 和 1 各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是, p = 1 / 2 p = 1/2 p=1/2 时错误率最小这个结果并不依赖于近似值 p p p f f f 。同样对于 f ′ = ( 1 − ( 1 − 1 m ) k n ) k = exp ⁡ ( k ln ⁡ ( 1 − ( 1 − 1 m ) k n ) ) f' = (1 - (1 - \frac{1}{m})^{kn})^k = \exp( k \ln( 1 - (1 - \frac{1}{m})^{kn} ) ) f=(1(1m1)kn)k=exp(kln(1(1m1)kn)) g ′ = k ln ⁡ ( 1 − ( 1 − 1 m ) k n ) g' = k \ln( 1 - ( 1 - \frac{1}{m})^{kn} ) g=kln(1(1m1)kn) p ′ = ( 1 − 1 m ) k n p' = ( 1 - \frac{1}{m})^{kn} p=(1m1)kn,我们可以将 g ′ g' g 写成
g ′ = 1 n ln ⁡ ( 1 − 1 / m ) ln ⁡ ( p ′ ) ln ⁡ ( 1 − p ′ ) g' = \frac{1}{n \ln(1 - 1/m)} \ln( p' ) \ln( 1 - p' ) g=nln(11/m)1ln(p)ln(1p)

同样根据对称性法则可以得到当 p ′ = 1 / 2 p' = 1/2 p=1/2 时, g ′ g' g 取得最小值。

位数组的大小

下面我们来看看,在不超过一定错误率的情况下,Bloom Filter 至少需要多少位才能表示全集中任意 n 个元素的集合。假设全集中共有 u 个元素,允许的最大错误率为 ϵ \epsilon ϵ,下面我们来求位数组的位数 m。

假设 X X X 为全集中任取 n 个元素的集合, F ( X ) F(X) F(X) 是表示X的位数组。那么对于集合 X X X 中任意一个元素 x ,在 s = F ( X ) s = F(X) s=F(X) 中查询 x 都能得到肯定的结果,即 s 能够接受 x 。显然,由于 Bloom Filter 引入了错误,s 能够接受的不仅仅是 X 中的元素,它还能够 ϵ ( u − n ) \epsilon (u - n) ϵ(un)false positive。因此,对于一个确定的位数组来说,它能够接受总共 n + ϵ ( u − n ) n + \epsilon (u - n) n+ϵ(un) 个元素。在 n + ϵ ( u − n ) n + \epsilon (u - n) n+ϵ(un)个元素中,s 真正表示的只有其中 n 个,所以一个确定的位数组可以表示
( n + ϵ ( u − n ) n ) {n + \epsilon (u - n) \choose n} (nn+ϵ(un))
个集合。m 位的位数组共有 2 m 2^m 2m个不同的组合,进而可以推出,m 位的位数组可以表示
2 m ( n + ϵ ( u − n ) n ) 2^m {n + \epsilon (u - n) \choose n} 2m(nn+ϵ(un))
个集合。全集中 n 个元素的集合总共有
( u n ) { u \choose n } (nu)
个,因此要让m位的位数组能够表示所有n个元素的集合,必须有
2 m ( n + ϵ ( u − n ) n ) ≥ ( u n ) 2^m {n + \epsilon (u - n) \choose n} \geq { u \choose n } 2m(nn+ϵ(un))(nu)
即:
m ≥ log ⁡ 2 ( u n ) ( n + ϵ ( u − n ) n ) ≈ log ⁡ 2 ( u n ) ( ϵ u n ) ≥ log ⁡ 2 ϵ − n = n log ⁡ 2 ( 1 / ϵ ) m \geq \log_2 \frac{ u \choose n }{ n + \epsilon (u - n) \choose n } \approx \log_2 \frac{ u \choose n}{\epsilon u \choose n} \geq \log_2 \epsilon^{-n} = n \log_2(1 / \epsilon) mlog2(nn+ϵ(un))(nu)log2(nϵu)(nu)log2ϵn=nlog2(1/ϵ)

上式中的近似前提是 n 和 ϵ \epsilon ϵu 相比很小,这也是实际情况中常常发生的。根据上式,我们得出结论:在错误率不大于 ϵ \epsilon ϵ 的情况下,m 至少要等于 n log ⁡ 2 ( 1 / ϵ ) n \log_2(1 / \epsilon) nlog2(1/ϵ) 才能表示任意 n 个元素的集合。

上一小节中我们曾算出当 k = m n ln ⁡ 2 k = \frac{m}{n} \ln 2 k=nmln2时错误率 f 最小,这时 f = 1 2 k = 1 2 m n ⋅ ln ⁡ 2 f = \frac{1}{2}^k = \frac{1}{2}^{\frac{m}{n} \cdot \ln 2} f=21k=21nmln2。现在令 f ≤ ϵ f \leq \epsilon fϵ,可以推出
m ≥ n log ⁡ 2 ( 1 / ϵ ) ln ⁡ 2 = n log ⁡ 2 e ⋅ log ⁡ 2 ( 1 / ϵ ) m \geq n \frac{ \log_2 ( 1 / \epsilon ) }{ \ln2 } = n \log_2 e \cdot \log_2 ( 1 / \epsilon ) mnln2log2(1/ϵ)=nlog2elog2(1/ϵ)
这个结果比前面我们算得的下界 n log ⁡ 2 ( 1 / ϵ ) n \log_2 ( 1/\epsilon ) nlog2(1/ϵ) 大了 log ⁡ 2 e ≈ 1.44 \log_2 e \approx 1.44 log2e1.44倍。这说明在哈希函数的个数取到最优时,要让错误率不超过 ϵ \epsilon ϵ,m 至少需要取到最小值的1.44倍。

总结

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter 在时间空间这两个因素之外又引入了另一个因素:错误率。在使用 Bloom Filter 判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

自从 Burton Bloom 在70年代提出 Bloom Filter 之后,Bloom Filter 就被广泛用于拼写检查和数据库系统中。近一二十年,伴随着网络的普及和发展,Bloom Filter 在网络领域获得了新生,各种 Bloom Filter 变种和新的应用不断出现。可以预见,随着网络应用的不断深入,新的变种和应用将会继续出现,Bloom Filter 必将获得更大的发展。


  1. M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking 10:5 (2002), 604—612. ↩︎

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值