海量数据处理算法—Bloom Filter

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

1. Bloom-Filter算法简介

Bloom-Filter,即布隆过滤器,1970年由Bloom中提出。它可以用于检索一个元素是否在一个集合中。

Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。它是一个判断元素是否存在集合的快速的概率算法。Bloom Filter有可能会出现错误判断,但不会漏掉判断。也就是Bloom Filter判断元素不再集合,那肯定不在。如果判断元素存在集合中,有一定的概率判断错误。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter比其他常见的算法(如hash,折半查找)极大节省了空间。

它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

2. Bloom-Filter的基本思想

Bloom-Filter算法的核心思想就是利用多个不同的Hash函数来解决“冲突”。

计算某元素x是否在一个集合中,首先能想到的方法就是将所有的已知元素保存起来构成一个集合R,然后用元素x跟这些R中的元素一一比较来判断是否存在于集合R中;我们可以采用链表等数据结构来实现。但是,随着集合R中元素的增加,其占用的内存将越来越大。试想,如果有几千万个不同网页需要下载,所需的内存将足以占用掉整个进程的内存地址空间。即使用MD5,UUID这些方法将URL转成固定的短小的字符串,内存占用也是相当巨大的。

于是,我们会想到用Hash table的数据结构,运用一个足够好的Hash函数将一个URL映射到二进制位数组(位图数组)中的某一位。如果该位已经被置为1,那么表示该URL已经存在。

Hash存在一个冲突(碰撞)的问题,用同一个Hash得到的两个URL的值有可能相同。为了减少冲突,我们可以多引入几个Hash,如果通过其中的一个Hash值我们得出某元素不在集合中,那么该元素肯定不在集合中。只有在所有的Hash函数告诉我们该元素在集合中时,才能确定该元素存在于集合中。这便是Bloom-Filter的基本思想。

原理要点:一是位数组, 而是k个独立hash函数。

1)位数组:
假设Bloom Filter使用一个m比特的数组来保存信息,初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0,即BF整个数组的元素都设置为0。

这里写图片描述

2)添加元素,k个独立hash函数
为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。

当我们往Bloom Filter中增加任意一个元素x时候,我们使用k个哈希函数得到k个哈希值,然后将数组中对应的比特位设置为1。即第i个哈希函数映射的位置hashi(x)就会被置为1(1≤i≤k)。

注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。

这里写图片描述

3)判断元素是否存在集合
在判断y是否属于这个集合时,我们只需要对y使用k个哈希函数得到k个哈希值,如果所有hashi(y)的位置都是1(1≤i≤k),即k个位置都被设置为1了,那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素(因为y1有一处指向了“0”位)。y2或者属于这个集合,或者刚好是一个false positive。

这里写图片描述

显然这 个判断并不保证查找的结果是100%正确的。

Bloom Filter的缺点:

1)Bloom Filter无法从Bloom Filter集合中删除一个元素。因为该元素对应的位会牵动到其他的元素。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。 此外,Bloom Filter的hash函数选择会影响算法的效果。

2)还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数,即hash函数选择会影响算法的效果。当hash函数个数k=(ln2)(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于nlg(1/E) 才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge ,大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。

注意:

这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。

一般BF可以与一些key-value的数据库一起使用,来加快查询。由于BF所用的空间非常小,所有BF可以常驻内存。这样子的话,对于大部分不存在的元素,我们只需要访问内存中的BF就可以判断出来了,只有一小部分,我们需要访问在硬盘上的key-value数据库。从而大大地提高了效率。

一个Bloom Filter有以下参数:

m bit数组的宽度(bit数)
n 加入其中的key的数量
k 使用的hash函数的个数
f False Positive的比率

3.错误率估计

前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:
这里写图片描述

其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:
这里写图片描述

令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:
这里写图片描述

(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:
这里写图片描述

这里写图片描述

相比p’和f’,使用p和f通常在分析中更为方便。

4.最优的哈希函数个数

既然Bloom Filter要靠多个哈希函数将集合映射到位数组中,那么应该选择几个哈希函数才能使元素查询时的错误率降到最低呢?这里有两个互斥的理由:如果哈希函数的个数多,那么在对一个不属于集合的元素进行查询时得到1的概率就大;但另一方面,如果哈希函数的个数少,那么位数组中的0就多。为了得到最优的哈希函数个数,我们需要根据上一小节中的错误率公式进行计算。

先用p和f进行计算。注意到f = exp(k ln(1 − e−kn/m)),我们令g = k ln(1 − e−kn/m),只要让g取到最小,f自然也取到最小。由于p = e-kn/m,我们可以将g写成
这里写图片描述

根据对称性法则可以很容易看出当p = 1/2,也就是k = ln2· (m/n)时,g取得最小值。在这种情况下,最小错误率f等于(1/2)k ≈ (0.6185)m/n。另外,注意到p是位数组中某一位仍是0的概率,所以p = 1/2对应着位数组中0和1各一半。换句话说,要想保持错误率低,最好让位数组有一半还空着。

需要强调的一点是,p = 1/2时错误率最小这个结果并不依赖于近似值p和f。同样对于f’ = exp(k ln(1 − (1 − 1/m)kn)),g’ = k ln(1 − (1 − 1/m)kn),p’ = (1 − 1/m)kn,我们可以将g’写成

这里写图片描述

同样根据对称性法则可以得到当p’ = 1/2时,g’取得最小值。

5.参数如何取值

在实际使用BloomFilter时,一般会关注false positive probability,因为这和额外开销相关。实际的使用中,期望能给定一个false positive probability和将要插入的元素数量,能计算出分配多少的存储空间较合适。

假设BloomFilter中元素总bit数量为m,插入的元素个数为n,hash函数的个数为k,false positive probability记做p,它们之间有如下关系

如果需要最小化false positive probability,则k的取值如下

k = m * ln2 / n;

而p的取值,和m,n又有如下关系
m = - n * lnp / (ln2) ^ 2;

把公式一代入公式二,得出给定n和p,k的取值应该为

k = -lnp / ln2;

最后,也同样可以计算出m。

##6.实际使用
最后,以一个例子具体描述使用BloomFilter的场景,以及在此场景下,BloomFilter的优势和劣势。

一组元素存在于磁盘中,数据量特别大,应用程序希望在元素不存在的时候尽量不读磁盘,此时,可以在内存中构建这些磁盘数据的BloomFilter,对于一次读数据的情况,分为以下几种情况:

1.请求的元素不在磁盘中,如果BloomFilter返回不存在,那么应用不需要走读盘逻辑,假设此概率为P1;如果BloomFilter返回可能存在,那么属于误判情况,假设此概率为P2
2.请求的元素在磁盘中,BloomFilter返回存在,假设此概率为P3

如果使用hashmap或者set的数据结构,情况如下:

1.请求的数据不在磁盘中,应用不走读盘逻辑,此概率为P1+P2
2.请求的元素在磁盘中,应用走读盘逻辑,此概率为P3

假设应用不读盘逻辑的开销为C1,走读盘逻辑的开销为C2,那么,BloomFilter和hashmap的开销为

Cost(BloomFilter) = P1 * C1 + (P2 + P3) * C2
Cost(HashMap) = (P1 + P2) * C1 + P3 * C2;

Delta = Cost(BloomFilter) - Cost(HashMap)
      = P2 * (C2 - C1)

因此,BloomFilter相当于以增加P2 * (C2 - C1)的时间开销,来获得相对于hashmap而言更少的空间开销。

参考链接:

1.http://oserror.com/backend/bloomfilter/
2.http://www.cnblogs.com/elric/archive/2010/09/17/1829512.html
3.http://www.178linux.com/2751
4.http://colobu.com/2016/07/02/bloom-filter-for-scala/
5.https://en.wikipedia.org/wiki/Bloom_filter

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值