快速幂,矩阵乘法,矩阵快速幂

快速幂:快速幂取模

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
//(a^b) mod c
//=(a%c)^b mod c
// a=a%c; for( ans=(ans*a)%c  );  ans= ans%c;
//b是偶数 a^b mod c=((a^2)^(b/2)) mod c =((a^2)mod c)^(b/2) mod c
//b是奇数 a^b mod c=((((a^2)mod c)^(b/2) mod c) *a) mod c
typedef long long LL;
LL a,b,c;
using namespace std;

//快速幂算法
int PowerMod(int a,int b,int c){
    int ans=1;
    a=a%c;
    while(b>0){
        if(b%2==1){
            ans=(ans*a)%c;
        }
        b=b/2;
        a=(a*a)%c;
    }
    return ans;
}
//位运算模式
LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
    LL ret = 1;
    while(b){
        if(b & 1) ret = (ret * a) % p;
        a = (a * a) % p;
        b >>= 1;
    }
    return ret;
}
//快速乘
LL fastMultiplication(LL a,LL b,LL mod){
    LL ans = 0;
    while(b){
        if(b%2==1){
            b--;
            ans = ans + a;
            ans %= mod;
        }else{
            b /= 2;
            a = a + a;
            a %= mod;
        }
    }
    return ans;
}
int main(){
    cin>>a>>b>>c;
    cout<<PowerMod(a,b,c)<<endl;
    cout<<pow_mod(a,b,c)<<endl;
    cout<<fastMultiplication(a,b,c)<<endl;


return 0;
}

模运算规则:

模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p
(a – b) % p = (a % p – b % p) % p
(a * b) % p = (a % p * b % p) % p
a^b % p = ((a % p)^b) % p
结合率:
((a+b) % p + c) % p = (a + (b+c) % p) % p
((a*b) % p * c)% p = (a * (b*c) % p) % p

矩阵乘法&&矩阵快速幂:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>

using namespace std;

const int MOD=10000;

struct mat{
int a[2][2];

};
mat mat_mul(mat x,mat y){   //矩阵乘法 O(n^3)
    mat res;
    memset(res.a,0,sizeof(res.a));
    for(int i=0;i<2;i++){
        for(int j=0;j<2;j++){}
        for(int k=0;k<2;k++){
            res.a[i][j]+=x.a[i][k]*y.a[k][j];
            res.a[i][j]%=MOD;
        }
    }
return res;
}
//矩阵快速幂   :快速幂思想
int pow(int n){
    mat c,res;
    memset(res.a,0,sizeof(res.a));
    c.a[0][0]=1;
    c.a[0][1]=1;
    c.a[1][0]=1;
    c.a[1][1]=0;
    for(int i=0;i<n;i++){
        res.a[i][i]=1; //单位矩阵
    }
    while(n){
        if(n&1) res=mat_mul(res,c);
        c=mat_mul(c,c);
        n=n>>1;
    }
return res.a[0][1];
}

矩阵快速幂简单例题:
HDU 1575 Tr A

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>

using namespace std;
const int MAXN = 15;
const int MOD = 9973;
int n,k;
struct Mat{
    int mat[MAXN][MAXN];
};
Mat init,unit;
Mat Mul(Mat a,Mat b){
    Mat c;
   // memset(c.mat,0,sizeof(c.mat));
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
                c.mat[i][j]=0;
            for(int k=0;k<n;k++){
                c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j]%MOD)%MOD;
                c.mat[i][j]%=MOD;
            }
        }
    }
    return c;
}

Mat Pow(Mat a,Mat b,int x){
    while(x){
        if(x%2==1) b=Mul(b,a);
        a=Mul(a,a);
        x=x/2;
    }

return b;
}


int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&k);
        memset(init.mat,0,sizeof(init.mat));
        memset(unit.mat,0,sizeof(unit.mat));
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                scanf("%d",&init.mat[i][j]);
                unit.mat[i][j]=init.mat[i][j];
            }
        }

        Mat res=Pow(init,unit,k-1);//不用单位矩阵,直接用mat*mat,所以k-1;

    int ans=0;
    for(int i=0;i<n;i++){
        ans=(ans+res.mat[i][i])%MOD;
    }
    printf("%d\n",ans%MOD);
    }

return 0;
}

例题参考:
https://www.xuebuyuan.com/956185.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值