快速幂:快速幂取模
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
//(a^b) mod c
//=(a%c)^b mod c
// a=a%c; for( ans=(ans*a)%c ); ans= ans%c;
//b是偶数 a^b mod c=((a^2)^(b/2)) mod c =((a^2)mod c)^(b/2) mod c
//b是奇数 a^b mod c=((((a^2)mod c)^(b/2) mod c) *a) mod c
typedef long long LL;
LL a,b,c;
using namespace std;
//快速幂算法
int PowerMod(int a,int b,int c){
int ans=1;
a=a%c;
while(b>0){
if(b%2==1){
ans=(ans*a)%c;
}
b=b/2;
a=(a*a)%c;
}
return ans;
}
//位运算模式
LL pow_mod(LL a, LL b, LL p){//a的b次方求余p
LL ret = 1;
while(b){
if(b & 1) ret = (ret * a) % p;
a = (a * a) % p;
b >>= 1;
}
return ret;
}
//快速乘
LL fastMultiplication(LL a,LL b,LL mod){
LL ans = 0;
while(b){
if(b%2==1){
b--;
ans = ans + a;
ans %= mod;
}else{
b /= 2;
a = a + a;
a %= mod;
}
}
return ans;
}
int main(){
cin>>a>>b>>c;
cout<<PowerMod(a,b,c)<<endl;
cout<<pow_mod(a,b,c)<<endl;
cout<<fastMultiplication(a,b,c)<<endl;
return 0;
}
模运算规则:
模运算与基本四则运算有些相似,但是除法例外。其规则如下:
(a + b) % p = (a % p + b % p) % p
(a – b) % p = (a % p – b % p) % p
(a * b) % p = (a % p * b % p) % p
a^b % p = ((a % p)^b) % p
结合率:
((a+b) % p + c) % p = (a + (b+c) % p) % p
((a*b) % p * c)% p = (a * (b*c) % p) % p
矩阵乘法&&矩阵快速幂:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
const int MOD=10000;
struct mat{
int a[2][2];
};
mat mat_mul(mat x,mat y){ //矩阵乘法 O(n^3)
mat res;
memset(res.a,0,sizeof(res.a));
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){}
for(int k=0;k<2;k++){
res.a[i][j]+=x.a[i][k]*y.a[k][j];
res.a[i][j]%=MOD;
}
}
return res;
}
//矩阵快速幂 :快速幂思想
int pow(int n){
mat c,res;
memset(res.a,0,sizeof(res.a));
c.a[0][0]=1;
c.a[0][1]=1;
c.a[1][0]=1;
c.a[1][1]=0;
for(int i=0;i<n;i++){
res.a[i][i]=1; //单位矩阵
}
while(n){
if(n&1) res=mat_mul(res,c);
c=mat_mul(c,c);
n=n>>1;
}
return res.a[0][1];
}
矩阵快速幂简单例题:
HDU 1575 Tr A
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN = 15;
const int MOD = 9973;
int n,k;
struct Mat{
int mat[MAXN][MAXN];
};
Mat init,unit;
Mat Mul(Mat a,Mat b){
Mat c;
// memset(c.mat,0,sizeof(c.mat));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
c.mat[i][j]=0;
for(int k=0;k<n;k++){
c.mat[i][j]=(c.mat[i][j]+a.mat[i][k]*b.mat[k][j]%MOD)%MOD;
c.mat[i][j]%=MOD;
}
}
}
return c;
}
Mat Pow(Mat a,Mat b,int x){
while(x){
if(x%2==1) b=Mul(b,a);
a=Mul(a,a);
x=x/2;
}
return b;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&k);
memset(init.mat,0,sizeof(init.mat));
memset(unit.mat,0,sizeof(unit.mat));
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
scanf("%d",&init.mat[i][j]);
unit.mat[i][j]=init.mat[i][j];
}
}
Mat res=Pow(init,unit,k-1);//不用单位矩阵,直接用mat*mat,所以k-1;
int ans=0;
for(int i=0;i<n;i++){
ans=(ans+res.mat[i][i])%MOD;
}
printf("%d\n",ans%MOD);
}
return 0;
}