Woolsey渣渣要好好学习

想好好学习的产品经理

SegNet 速览笔记

SegNet用于做图像语义分割。比以往神经网络要训练参数更少、速度更快、memory需求更低。Architecture总体上是encoder-decoder的结构。 encoder采用了与VGG16网络相同的13层卷积层,decoder由上采样和卷积层构成。 每一个encoder和一个de...

2017-07-07 15:08:25

阅读数 1420

评论数 0

caffe 速览笔记

本文主要是在阅读Caffe Tutrorial的过程中做的笔记,精要地提取了要点。

2017-07-07 15:06:46

阅读数 262

评论数 0

Batch Normalization —— 加速深度神经网络收敛利器

Batch Normalization 提出自《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》。其效果主要是加速网络收敛速度,并简化超参数的调节。

2017-07-07 15:02:18

阅读数 1480

评论数 0

主成分分析(PCA)原理详解

转载自:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA简介 1. 相关背景       上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解方面的项目...

2017-06-27 00:45:49

阅读数 210

评论数 0

机器学习中的偏差和方差

在统计学习框架下,大家刻画模型复杂度的时候,有这么个观点,认为Error = Bias +Variance。这里的Error大概可以理解为模型的预测错误率,是有两部分组成的,一部分是由于模型太简单而带来的估计不准确的部分——偏差(Bias),另一部分是由于模型太复杂而带来的更大的变化空间和不确定性...

2017-05-30 22:07:23

阅读数 703

评论数 0

二元回归解决图像恢复问题(图像去噪)

对于本次实验,进行了多次方法的更新迭代,最终使用多变量固定窗口二元高斯回归方法,自我测试效果达到:0.8噪音比下,原受损图像距离774.9727,处理后距离33.2362;0.6噪音比下,原受损图像距离671.1107,处理后距离20.1649;与一元线性回归相比提升三分之一以上。效果良好。

2017-05-23 20:36:38

阅读数 1091

评论数 0

OpenGL - 国旗绘制(五角星绘制)

绘制目标主要是五角星的绘制,怎样才能优雅地绘制出准确的五角星呢?分析整体思路:通过画五个金色的四边形来完成对五角星的绘制 通过P、Q两点的坐标,计算出M、N的坐标,进而绘制出四边形。 然后根据P、Q坐标,计算出其他四个五角星顶点的坐标,依上法绘制其余四边形 完成五角星绘制角度计算:根据两个条...

2017-04-06 02:07:45

阅读数 2331

评论数 0

向极限挑战的熵编码——算术编码

Huffman 编码使用整数个二进制位对符号进行编码,这种方法在许多情况下无法得到最优的压缩效果。假设某个字符的出现概率为 80%,该字符事实上只需要 -log2(0.8) = 0.322 位编码,但 Huffman 编码一定会为其分配一位 0 或一位 1 的编码。可以想象,整个信息的 80% 在...

2017-03-24 03:09:20

阅读数 304

评论数 0

Draco代码分析(一) —— Encode过程&探究其数据编码方式

Draco encode过程代码分析 - 探究其数据编码方式IntroductionDraco是谷歌在2017年1月发布的一个3D图形开源压缩库,提供了多种算法进行压缩和解压缩。 对于encoder过程,Draco整体思路是将网格的连接信息和几何信息进行分别编码并进行存储。 其中,连接信息使用...

2017-03-19 13:30:39

阅读数 1606

评论数 0

计算机网络Introduction

计算机网络Introduction笔记

2017-03-17 18:52:12

阅读数 270

评论数 1

什么是P问题、NP问题和NPC问题

转载自Matrix67 这或许是众多OIer最大的误区之一。     你会经常看到网上出现“这怎么做,这不是NP问题吗”、“这个只有搜了,这已经被证明是NP问题了”之类的话。你要知道,大多数人此时所说的NP问题其实都是指的NPC问题。他们没有搞清楚NP问题和NPC问题的概念。NP问题并...

2016-06-12 15:31:24

阅读数 398

评论数 0

Skew Heaps 习题解

本文介绍另一种优化堆合并操作的数据结构。Skew Heaps 是左式堆的简化版,它没有Npl属性,每次合并后无条件交换左右子树。这样虽然不能严格保证合并操作的时间复杂度是O(logN),但摊还代价是O(logN)。本文将进行摊还分析的证明,并给出相关题目的分析。摊还分析题目分析 The res...

2016-06-04 22:00:17

阅读数 1434

评论数 0

Leftist Heaps 习题解

Leftist Heaps (最左堆)是一种用于快速合并的数据结构,是堆的一种变种。它的合并操作只需花费O(logN)的代价。 对于二叉堆来说,两个堆合并是非常昂贵的操作,这将耗费O(N)的时间,与重新建堆的时间相同。为了应对优先队列的Merge操作,我们从本篇开始将介绍包括最左堆(又叫左式堆)...

2016-06-02 23:17:06

阅读数 1370

评论数 0

Inverted File Index 文件倒排索引 课件理解与习题解

倒排索引是一种文件搜索的方式,它是搜索引擎实现的基础。它将文件内容中的词建立成索引,以此为依据搜索符合条件的文件。本文将根据高级数据结构课程课件简要介绍文件倒排索引的建立及其特点,然后重点进行pta中的题目分析。

2016-06-01 23:12:15

阅读数 1847

评论数 0

B+树 习题解

B+树是一种n叉树,它将所有数据存在一个level中。B+ 树的特点是能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度。因此B+树被应用于数据库和操作系统的文件系统中。 B+树的理解没有红黑树这么复杂,本文将首先简要介绍B+树,然后分析B+树的先关题目。本文重点是最后一部分。

2016-06-01 17:33:18

阅读数 2191

评论数 0

Red-Black Trees 红黑树

红黑树是另一种自平衡二叉查找树。它通过较为复杂的调整,实现一种“局部平衡”。它的性能较为高效,应用广泛,被应用于linux内核进程调度,实现关联数组等。 本文将首先介绍红黑树的特点及其与AVL树的比较,然后说明红黑树的实现方式,评价红黑树的性能,最后对红黑树进行实践。红黑树的特点 本节将整体...

2016-05-29 09:40:22

阅读数 636

评论数 0

Amortized Analysis 摊还分析

Amortized Analysis摊还分析考察一个操作序列中所执行的所有操作的平均时间,来评价操作的代价。这个操作序列中也许某一操作的代价很高,但因为还有其他操作,所以这些操作的平均代价并没有那么高。 本文将首先将这种代价分析方式与最坏情况时间复杂度和平均时间复杂度两种方式进行区分,然后通过一...

2016-05-27 15:58:22

阅读数 1720

评论数 0

Splay Trees 学习笔记

Splays Trees 也是一种二叉搜索树,用于提高连续搜索的效率。Splay Trees 通过将被访问到的节点放于根,提升访问速度。 它与AVL Trees 的效果有所区别。AVL树通过使树balanced降低树的高度至logN,从而使得单次搜索的复杂度为O(logN)。而Splay Tre...

2016-05-27 09:28:10

阅读数 1118

评论数 0

AVL Trees 学习笔记

AVL Trees 是一种特殊的二叉搜索树,它的作用是通过自我调整,让整棵树保持平衡,从而降低整棵树的高度,以提高查找效率。 本文将首先介绍AVL Trees,然后介绍它的实现方法,性能评估,最后分析题目。 Introduction特点通过自我调整使树趋于平衡,降低树的高度,提高搜索效率本...

2016-05-26 12:19:05

阅读数 1720

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭