计算机视觉
文章平均质量分 93
Woolseyyy
这个作者很懒,什么都没留下…
展开
-
关于交叉熵在loss函数中使用的理解
转载自:https://blog.csdn.net/tsyccnh/article/details/79163834 关于交叉熵在loss函数中使用的理解交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够转载 2020-07-27 16:35:12 · 427 阅读 · 1 评论 -
pytorch的一些细节记录
Dilation of Conv原创 2020-04-23 22:28:03 · 262 阅读 · 0 评论 -
V4d:4d Convolutional Neural Networks For Video-level Representation Learning
本文是一篇ICLR2020的文章文章地址:http://xxx.itp.ac.cn/abs/2002.07442Open Review:https://openreview.net/forum?id=SJeLopEYDHBackground对于视频分类、动作识别等任务来说,如何简洁、高效地建模时序信息一直是重要的研究问题。3D-CNN的提出虽然提供了一个时序建模的方案,但是它的运算...原创 2020-03-01 12:44:49 · 3357 阅读 · 2 评论 -
CNN发展相关问题
Inception 系列的发展与区别从Inception v1到Inception-ResNet,一文概览Inception家族的「奋斗史」 - 机器之心的文章 - 知乎https://zhuanlan.zhihu.com/p/37505777Inception V1:采用了多尺寸卷积核提取特征后融合的“加宽”设计。采用了两条辅助的中间层softmax分类器,用以改善梯度消失的问题...原创 2020-02-23 12:53:06 · 410 阅读 · 0 评论 -
CNN发展
> 参考:CNN系列模型发展简述(附github代码——已全部跑通) - KevinCK的文章 - 知乎 https://zhuanlan.zhihu.com/p/66215918演变LeNet:2个卷积3个全连接,最早用于数字识别AlexNet:12年ImageNet冠军,5个卷积3个全连接,多个小卷积代替单一大卷积;使用...原创 2020-02-20 12:20:30 · 462 阅读 · 0 评论 -
计算机视觉面试题复习
CNN在图像上表现好的原因相比于手工特征,CNN可以采用数据驱动的方式学习特征提取,能够提取到更好更丰富的特征。深层网络可以拟合更复杂的计算,从而提取更复杂更抽象的特征。相比于普通深度神经网络,卷积核共享参数,充分利用图像上的空间局部性,因此具有参数共享和稀疏连接两条优点,不容易过拟合。CNN中的池化层还使网络具有平移不变性的特性。参数共享: 不同图像区域用的卷积核共享一...原创 2020-02-20 11:49:21 · 745 阅读 · 0 评论 -
Attention 机制
Attention是一种近年来较为流行的机制,广泛地在自然语言处理、计算机视觉等领域应用。它的作用机制易于人类理解——给重要区域更多的注意力。但是,如何判断什么是“重要”的?注意力又是如何影响决策的?本文将尝试细致理解Attention机制及其几个典型变种,以期真正理解attention机制并得以在今后灵活运用和改进。原创 2020-01-08 00:23:56 · 357 阅读 · 0 评论 -
科研经验与习惯——2019年末课题组总结
年末老师组织几个课题组进行了2019年的总结,总结了一下科研过程中的经验与习惯,这里做一个整理。内容包括:关于创新点寻找、关于论文阅读、关于实验部分、关于合作、关于rebuttal。原创 2019-12-25 17:51:01 · 801 阅读 · 0 评论 -
[ICCV2019] Co-segmentation Inspired Attention Networks for Video-based Person Re-identification
这篇文章提出了一种Co-Segmentation Inspired Attention模块,用于专注于视频中的人像主体,忽略背景信息的干扰。本质上这是一篇将non-local模块,或是temporal self-attention机制应用于video-reid的文章,但相较于其他应用non-local在video-reid的文章来说,它的分析较为详尽。原创 2019-12-19 20:51:38 · 1010 阅读 · 0 评论 -
Denoise: from image to point cloud
在掠读ICCV2019论文集的过程中,读到[Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning],觉得这篇文章在写作上写的很漂亮,并且把 Denoise 问题的脉络介绍的详细清晰。因此在这里基于这篇文章对 Denoise 做一个领域梳理。...原创 2019-12-12 10:31:28 · 1256 阅读 · 1 评论 -
SegNet 速览笔记
SegNet用于做图像语义分割。比以往神经网络要训练参数更少、速度更快、memory需求更低。Architecture总体上是encoder-decoder的结构。 encoder采用了与VGG16网络相同的13层卷积层,decoder由上采样和卷积层构成。 每一个encoder和一个decoder对应。原创 2017-07-07 15:08:25 · 2014 阅读 · 0 评论 -
caffe 速览笔记
本文主要是在阅读Caffe Tutrorial的过程中做的笔记,精要地提取了要点。原创 2017-07-07 15:06:46 · 544 阅读 · 0 评论 -
Batch Normalization —— 加速深度神经网络收敛利器
Batch Normalization 提出自《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》。其效果主要是加速网络收敛速度,并简化超参数的调节。原创 2017-07-07 15:02:18 · 3971 阅读 · 0 评论