[NOIP 2011 普及组] 瑞士轮
题目背景
在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。
本题中介绍的瑞士轮赛制,因最早使用于 1895 1895 1895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。
题目描述
2 × N 2 \times N 2×N 名编号为 1 ∼ 2 N 1\sim 2N 1∼2N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。
每轮比赛的对阵安排与该轮比赛开始前的排名有关:第 1 1 1 名和第 2 2 2 名、第 3 3 3 名和第 4 4 4名、……、第$2K - 1 名和第 名和第 名和第 2K$名、…… 、第$2N - 1 $名和第 2 N 2N 2N名,各进行一场比赛。每场比赛胜者得$1 $分,负者得 $0 $分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。
现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第$ Q$ 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。
输入格式
第一行是三个正整数 N , R , Q N,R ,Q N,R,Q,每两个数之间用一个空格隔开,表示有 $2 \times N 名选手、 名选手、 名选手、R$ 轮比赛,以及我们关心的名次 Q Q Q。
第二行是 2 × N 2 \times N 2×N 个非负整数 s 1 , s 2 , … , s 2 N s_1, s_2, …, s_{2N} s1,s2,…,s2N,每两个数之间用一个空格隔开,其中$ s_i 表示编号为 表示编号为 表示编号为i$ 的选手的初始分数。 第三行是 2 × N 2 \times N 2×N 个正整数 w 1 , w 2 , … , w 2 N w_1 , w_2 , …, w_{2N} w1,w2,…,w2N,每两个数之间用一个空格隔开,其中 w i w_i wi 表示编号为 i i i 的选手的实力值。
输出格式
一个整数,即 R R R 轮比赛结束后,排名第$ Q$ 的选手的编号。
样例 #1
样例输入 #1
2 4 2
7 6 6 7
10 5 20 15
样例输出 #1
1
提示
【样例解释】
【数据范围】
对于$30% $的数据, 1 ≤ N ≤ 100 1 ≤ N ≤ 100 1≤N≤100;
对于$50% $的数据,$1 ≤ N ≤ 10,000 $;
对于 100 % 100\% 100%的数据, 1 ≤ N ≤ 100 , 000 , 1 ≤ R ≤ 50 , 1 ≤ Q ≤ 2 N , 0 ≤ s 1 , s 2 , … , s 2 N ≤ 1 0 8 , 1 ≤ w 1 , w 2 , … , w 2 N ≤ 1 0 8 1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s_1, s_2, …, s_{2N}≤10^8,1 ≤w_1, w_2 , …, w_{2N}≤ 10^8 1≤N≤100,000,1≤R≤50,1≤Q≤2N,0≤s1,s2,…,s2N≤108,1≤w1,w2,…,w2N≤108。
noip2011普及组第3题。
题解
#include <iostream>
#include <algorithm>
using namespace std;
int N, R, Q;
struct Player
{
int id;
int score;
int power;
};
Player players[200000];
bool cmp(Player player_1, Player player_2)
{
if(player_1.score != player_2.score) return player_1.score > player_2.score;
else return player_1.id < player_2.id;
}
void compete()
{
std::stable_sort(players, players + 2 * N, cmp);
for(int i = 0; i < 2 * N; i += 2)
{
if(players[i].power > players[i + 1].power) players[i].score++;
else players[i+1].score++;
}
}
int main()
{
cin >> N >> R >> Q;
for(int i = 0; i < 2 * N; i++)
{
players[i].id = i + 1;
cin >> players[i].score;
}
for(int i = 0; i < 2 * N; i++)
{
cin >> players[i].power;
}
for(int i = 0; i < R; i++)
{
compete();
}
std::sort(players, players + 2 * N, cmp);
cout << players[Q-1].id;
return 0;
}
思考
实际上这题难度并不高,只是对于排序的简单应用,但是我一开始的尝试中用了std::sort
函数去做,但是结果发现还是存在TLE的情况,之后翻阅了讨论之后尝试了std::stable_sort
函数,顺利通过。
sort
函数
sort
函数在标准库中的实现采用的是内省排序(Introsort)算法,他是一种混合排序算法,它结合了快速排序(Quicksort)、堆排序(Heapsort)和插入排序(Insertion sort),平均时间复杂度为
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)
stable_sort
函数
stable_sort
函数主要基于归并排序,其主要特点是在排序过程中能够保持相等元素的相对顺序不变,即具有稳定性,时间复杂度通常为
O
(
n
l
o
g
2
n
)
O(nlog^2n)
O(nlog2n)
比较
对于排序的稳定性,stable_sort
具有稳定性,而sort
不具有稳定性,即排序后相等元素的相对顺序可能会改变。同时,在大多数情况下,sort
具有更好的效率,在一些特定的情况下可以通过使用stable_sort
取得更好的效果。