洛谷刷题日记 P1309 [NOIP 2011 普及组] 瑞士轮

[NOIP 2011 普及组] 瑞士轮

题目背景

在双人对决的竞技性比赛,如乒乓球、羽毛球、国际象棋中,最常见的赛制是淘汰赛和循环赛。前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高。后者的特点是较为公平,偶然性较低,但比赛过程往往十分冗长。

本题中介绍的瑞士轮赛制,因最早使用于 1895 1895 1895年在瑞士举办的国际象棋比赛而得名。它可以看作是淘汰赛与循环赛的折中,既保证了比赛的稳定性,又能使赛程不至于过长。

题目描述

2 × N 2 \times N 2×N 名编号为 1 ∼ 2 N 1\sim 2N 12N 的选手共进行R 轮比赛。每轮比赛开始前,以及所有比赛结束后,都会按照总分从高到低对选手进行一次排名。选手的总分为第一轮开始前的初始分数加上已参加过的所有比赛的得分和。总分相同的,约定编号较小的选手排名靠前。

每轮比赛的对阵安排与该轮比赛开始前的排名有关:第 1 1 1 名和第 2 2 2 名、第 3 3 3 名和第 4 4 4名、……、第$2K - 1 名和第 名和第 名和第 2K$名、…… 、第$2N - 1 $名和第 2 N 2N 2N名,各进行一场比赛。每场比赛胜者得$1 $分,负者得 $0 $分。也就是说除了首轮以外,其它轮比赛的安排均不能事先确定,而是要取决于选手在之前比赛中的表现。

现给定每个选手的初始分数及其实力值,试计算在R 轮比赛过后,排名第$ Q$ 的选手编号是多少。我们假设选手的实力值两两不同,且每场比赛中实力值较高的总能获胜。

输入格式

第一行是三个正整数 N , R , Q N,R ,Q N,R,Q,每两个数之间用一个空格隔开,表示有 $2 \times N 名选手、 名选手、 名选手、R$ 轮比赛,以及我们关心的名次 Q Q Q

第二行是 2 × N 2 \times N 2×N 个非负整数 s 1 , s 2 , … , s 2 N s_1, s_2, …, s_{2N} s1,s2,,s2N,每两个数之间用一个空格隔开,其中$ s_i 表示编号为 表示编号为 表示编号为i$ 的选手的初始分数。 第三行是 2 × N 2 \times N 2×N 个正整数 w 1 , w 2 , … , w 2 N w_1 , w_2 , …, w_{2N} w1,w2,,w2N,每两个数之间用一个空格隔开,其中 w i w_i wi 表示编号为 i i i 的选手的实力值。

输出格式

一个整数,即 R R R 轮比赛结束后,排名第$ Q$ 的选手的编号。

样例 #1

样例输入 #1

2 4 2 
7 6 6 7 
10 5 20 15

样例输出 #1

1

提示

【样例解释】

【数据范围】

对于$30% $的数据, 1 ≤ N ≤ 100 1 ≤ N ≤ 100 1N100

对于$50% $的数据,$1 ≤ N ≤ 10,000 $;

对于 100 % 100\% 100%的数据, 1 ≤ N ≤ 100 , 000 , 1 ≤ R ≤ 50 , 1 ≤ Q ≤ 2 N , 0 ≤ s 1 , s 2 , … , s 2 N ≤ 1 0 8 , 1 ≤ w 1 , w 2 , … , w 2 N ≤ 1 0 8 1 ≤ N ≤ 100,000,1 ≤ R ≤ 50,1 ≤ Q ≤ 2N,0 ≤ s_1, s_2, …, s_{2N}≤10^8,1 ≤w_1, w_2 , …, w_{2N}≤ 10^8 1N100,000,1R50,1Q2N,0s1,s2,,s2N108,1w1,w2,,w2N108

noip2011普及组第3题。

题解

#include <iostream>
#include <algorithm>
using namespace std;
int N, R, Q;

struct Player
{
    int id;
    int score;
    int power;
};

Player players[200000];

bool cmp(Player player_1, Player player_2)
{
    if(player_1.score != player_2.score) return player_1.score > player_2.score;
    else return player_1.id < player_2.id; 
}

void compete()
{
    std::stable_sort(players, players + 2 * N, cmp);
    for(int i = 0; i < 2 * N; i += 2)
    {
        if(players[i].power > players[i + 1].power) players[i].score++;
        else players[i+1].score++;
    }
}

int main()
{
    cin >> N >> R >> Q;
    for(int i = 0; i < 2 * N; i++)
    {
        players[i].id = i + 1;
        cin >> players[i].score;
    }
    for(int i = 0; i < 2 * N; i++)
    {
        cin >> players[i].power;
    }
    for(int i = 0; i < R; i++)
    {
        compete();
    }
    std::sort(players, players + 2 * N, cmp);
    cout << players[Q-1].id;
    return 0;
}

思考

实际上这题难度并不高,只是对于排序的简单应用,但是我一开始的尝试中用了std::sort函数去做,但是结果发现还是存在TLE的情况,之后翻阅了讨论之后尝试了std::stable_sort函数,顺利通过。

sort函数

sort函数在标准库中的实现采用的是内省排序(Introsort)算法,他是一种混合排序算法,它结合了快速排序(Quicksort)、堆排序(Heapsort)和插入排序(Insertion sort),平均时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

stable_sort函数

stable_sort函数主要基于归并排序,其主要特点是在排序过程中能够保持相等元素的相对顺序不变,即具有稳定性,时间复杂度通常为 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

比较

对于排序的稳定性,stable_sort具有稳定性,而sort不具有稳定性,即排序后相等元素的相对顺序可能会改变。同时,在大多数情况下,sort具有更好的效率,在一些特定的情况下可以通过使用stable_sort取得更好的效果。

<think>好的,我现在需要帮助用户查找关于Traefik插件的使用说明、配置和示例。首先,用户提到他们想了解与Traefik插件相关的信息,特别是使用说明、配置和示例。根据用户提供的引用内容,我需要整理这些信息,并按照用户的要求进行结构化回答。 首先,我要回顾用户提供的引用内容。引用[1]提到了在静态配置文件中添加插件的配置示例,引用[3]和[5]介绍了GitHub上的示例插件demo,说明插件是通过Yaegi动态执行的,并提到了开发指南。引用[4]提到了使用Helm chart部署Traefik,这可能与插件的安装有关。引用[2]可能是一个Terraform的示例,但具体内容不明确,暂时可能用不上。 接下来,我需要确定用户的需求:他们需要知道如何配置和使用Traefik插件,包括具体的步骤和示例。根据引用内容,可以分步骤说明配置方法,比如静态配置文件中的设置,以及插件的开发或使用现有插件的步骤。可能还需要提到动态加载和注意事项,如实验性功能、版本兼容性等。 需要确保回答符合用户的要求,结构清晰,分步骤说明。同时,要引用提供的引用内容,正确标注引用标识。例如,引用[1]中的配置示例,引用[3]关于GitHub仓库的信息,引用[4]提到的Helm安装方法,以及引用[5]的项目介绍部分。 另外,用户可能对插件的实际应用场景和如何开发自己的插件感兴趣,所以可能需要包含这些信息。还要生成相关问题,如如何开发自定义插件、动态加载机制、性能影响等。 需要注意的是,用户提供的引用中有部分内容可能不直接相关,比如引用[2]的Terraform示例,但如果没有更相关的信息,可以暂时忽略。确保回答中的引用准确对应到相关的部分。 总结回答结构: 1. 插件配置步骤,包括静态配置文件示例和Helm安装。 2. 使用现有插件的步骤,比如demo插件的安装。 3. 开发自定义插件的基本流程。 4. 注意事项,如实验性功能、版本要求等。 5. 相关问题部分,生成相关问题。 现在需要将这些信息整合成自然的中文回答,正确引用来源,并确保LaTeX格式符合要求,虽然用户的问题可能不涉及数学公式,但如果有变量或代码,需要使用正确的格式。例如,配置示例中的代码块需要用反引号包裹,并注明语言类型。 检查是否有遗漏的信息,比如引用[3]提到的Yaegi解释器,可能需要解释动态加载机制。同时,引用[5]提到插件是扩展Traefik功能的强大工具,可以用于流量管理,这部分可以在应用场景中提及。 最后,生成的相关问题需要与Traefik插件的使用、开发、配置相关,确保问题有针对性,能够引导用户进一步探索。</think>### Traefik 插件使用说明与配置示例 #### 1. 插件配置基础步骤 Traefik 插件通过静态配置文件或动态加载实现。以下为静态配置示例(需在 Traefik 的 YAML 配置文件中添加): ```yaml experimental: localPlugins: example: moduleName: github.com/traefik/plugindemo # 插件模块路径[^1] ``` 此配置声明了一个名为 `example` 的本地插件,指向 GitHub 上的示例仓库[^3]。 若使用 Helm 安装 Traefik,需在 `values.yaml` 中启用插件支持: ```yaml experimental: plugins: enabled: true # 启用插件功能[^4] ``` #### 2. 使用现有插件(以 demo 插件为例) 1. **安装插件** 通过修改 Traefik 部署配置,将插件代码编译到 Traefik 二进制文件中,或通过动态加载(需 Yaegi 支持)。 2. **配置路由规则** 在 `IngressRoute` 中引用插件: ```yaml apiVersion: traefik.io/v1alpha1 kind: Middleware metadata: name: demo-plugin spec: plugin: example: # 插件名称 headerName: "X-Custom-Header" headerValue: "Hello from Plugin" ``` #### 3. 开发自定义插件 1. **代码结构** 遵循 Traefik 插件接口规范,实现 `New` 初始化方法和 `Handle` 请求处理逻辑[^3]。 2. **动态加载** 利用 Yaegi 解释器实时加载插件(无需重启 Traefik): ```go // 示例插件逻辑 func New(ctx context.Context, config *Configuration) (http.Handler, error) { return &demoPlugin{config}, nil } ``` #### 4. 注意事项 - **实验性功能**:插件功能标记为实验性,需在配置中显式启用[^4]。 - **版本兼容性**:确认 Traefik 版本支持插件(建议 v2.3+)[^4]。 - **安全限制**:动态加载插件需注意代码安全性,建议审核第三方插件[^5]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值