题目大意
给出一个长度为n的字符串A,接下来给出m个字符串,对于每个字符串B,用给出的方法去与A匹配:
1. 设B的长度为L,先与A的位置为1…L的一段进行匹配:先比较A[1]和B[1],接下来比较A[2]和B[2],直到比较完A[L]和B[L]全部匹配或出现一个不相同(即A[i]≠B[i])
2. 如果匹配失败,则匹配A的2..L+1和B的1..L,如果得不到长度为L的串(如:A的长度为12,L=6,则A[8..13]与B[1..6]匹配,但是13>12),则在A后面补’#’直到长度为L(即变成‘XXXX##’)。以此类推
3. 如果匹配成功或A[len(A)..len(A)+L-1]也匹配完,则退出匹配
求每个字符串匹配过程比较次数
样例:
【input】
7
1090901
4
87650
0901
109
090
【output】
7
10
3
4
解释:第一个字符串’87650’与A每一个片段都只比较了第1位就失败了;
第二个’0901’,先与’1090’比较1次,然后与’0909’比较4次(因为’090’是它们的公共前缀,则前3位都相同,但比较到第4位时’1’不等于’9’),然后与’9090’只比较了第1位,接着与’0901’匹配成功,比较了4次,总共1+4+1+4=10次
数据范围:n≤ 105 m≤ 5∗104 单个字符串B长度不超过 105 所有字符串B总长不超过 3∗106 所有字符串均由数字0…9组成
限制:Time Limits:3s Memory Limits:256MB
正解
先考虑当前字符串B 不能匹配成功 的情况:
对于A[i..i+L-1],设它与B的LCP为lcp(i),则答案 Ans=
∑ni=1lcp(i)+1
那么我们可以枚举这个lcp,然后确定有多少段A[i..i+L-1]与B的LCP等于这个值
显然,把A[i..i+L-1]看成A的后缀Suffix(i)不会影响答案,因为现在考虑的是不能匹配成功的情况。
所以可以先给A的后缀排个序,然后从小到大枚举这个lcp,设它是j,就可以二分出一个区间l..r,使
lcp(i)≥j[l≤i≤r]
这样时间复杂度就只有
O(Llogn)
再考虑字符串B 能匹配成功 的情况:
同样通过二分,可以确定lcp≥L的区间,在这个区间里找一个出现位置最前的(即sa的最小值),设它为p,则答案Ans=
∑pi=1lcp(i)+1
当我们枚举lcp时,确定了一个区间l..r,那么只有sa[i]≤p [l≤i≤r]的才能统计入答案,打个主席树就好了
时间复杂度还是
O(Llogn)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100005,maxm=262205,Maxm=2000005;
typedef long long LL;
int n,m,M,sa[maxn],height[maxn],rank[maxn],xx[maxn],yy[maxn],s[maxn],v[maxn],le[maxn],ri[maxn],len,t[maxm];
LL ans;
char S[maxn],Str[maxn];
struct Chairman_Tree
{
int tot,l[Maxm],r[Maxm],sum[Maxm],root[maxm];
void add(int L,int R,int v,int &x,int y)
{
x=++tot;
sum[x]=sum[y]+1;
if (L==R) return;
int mid=(L+R)/2;
l[x]=l[y];r[x]=r[y];
if (v<=mid) add(L,mid,v,l[x],l[y]);else add(mid+1,R,v,r[x],r[y]);
}
int count(int L,int R,int v,int x,int y)
{
if (v>=R) return sum[y]-sum[x];
int mid=(L+R)/2;
if (v<=mid) return count(L,mid,v,l[x],l[y]);
return count(mid+1,R,v,r[x],r[y])+sum[l[y]]-sum[l[x]];
}
}T;
void add(int l,int r,int g,int v,int x)
{
t[x]=min(t[x],v);
if (l==r) return;
int mid=(l+r)/2;
if (g<=mid) add(l,mid,g,v,x*2);else add(mid+1,r,g,v,x*2+1);
}
int getmin(int l,int r,int a,int b,int x)
{
if (l==a && r==b) return t[x];
int mid=(l+r)/2;
if (b<=mid) return getmin(l,mid,a,b,x*2);
if (a>mid) return getmin(mid+1,r,a,b,x*2+1);
return min(getmin(l,mid,a,mid,x*2),getmin(mid+1,r,mid+1,b,x*2+1));
}
bool cmp(int *r,int a,int b,int l)
{
return r[a]==r[b] && r[a+l]==r[b+l];
}
void build_sa()
{
memset(xx,255,sizeof(xx)); memset(yy,255,sizeof(yy));
int i,p,l,m='9'+1,*x=xx,*y=yy,*t;
for (i=0;i<n;i++) s[x[i]=S[i]]++;
for (i=1;i<m;i++) s[i]+=s[i-1];
for (i=n-1;i>=0;i--) sa[--s[x[i]]]=i;
for (l=p=1;p<n;m=p,l*=2)
{
for (p=0,i=n-l;i<n;i++) y[p++]=i;
for (i=0;i<n;i++) if (sa[i]>=l) y[p++]=sa[i]-l;
for (i=0;i<m;i++) s[i]=0;
for (i=0;i<n;i++) s[v[i]=x[y[i]]]++;
for (i=1;i<m;i++) s[i]+=s[i-1];
for (i=n-1;i>=0;i--) sa[--s[v[i]]]=y[i];
for (t=x,x=y,y=t,x[sa[0]]=0,i=p=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],l)?p-1:p++;
}
}
void build_height()
{
int i,j,k=0;
for (i=0;i<n;i++) rank[sa[i]]=i;
for (i=0;i<n;height[rank[i++]]=k)
{
k=k?k-1:k;
if (rank[i])
{
for (j=sa[rank[i]-1];S[j+k]==S[i+k];k++);
}
}
}
void init_data_structures()
{
memset(t,127,sizeof(t));
for (int i=0;i<n;i++)
{
T.add(0,n-1,sa[i],T.root[i+1],T.root[i]);
add(0,n-1,i,sa[i],1);
}
}
void init()
{
scanf("%d",&n);
scanf("%s",&S);
build_sa();
build_height();
init_data_structures();
}
int find(int l,int r,char c,int x)
{
if (l>r) return l;
for (int mid=(l+r)/2;l<r;mid=(l+r)/2)
if (sa[mid]+x>=n || S[sa[mid]+x]<c) l=mid+1;else r=mid;
if (sa[l]+x>=n || S[sa[l]+x]<c) return l+1;else return l;
}
void work()
{
scanf("%d",&m);
while (m--)
{
scanf("%s",Str);
len=strlen(Str);
le[0]=0;ri[0]=n-1;
for (M=1;M<=len;M++)
{
le[M]=find(le[M-1],ri[M-1],Str[M-1],M-1); ri[M]=find(le[M],ri[M-1],Str[M-1]+1,M-1)-1;
if (le[M]>ri[M]) break;
}
ans=0;
if (M<=len)
{
for (int i=0;i<M;i++) ans+=ri[i]-le[i]+1;
printf("%lld\n",ans);
}else
{
int last=getmin(0,n-1,le[len],ri[len],1);
for (int i=0;i<len;i++) ans+=T.count(0,n-1,last,T.root[le[i]],T.root[ri[i]+1]);
printf("%lld\n",ans);
}
}
}
int main()
{
freopen("slasticar.in","r",stdin); freopen("slasticar.out","w",stdout);
init();
work();
fclose(stdin); fclose(stdout);
return 0;
}