[bzoj3531]山东省选2014 travel

题目描述

S国有N个城市,编号从1到N。城市间用N-1条双向道路连接,满足
从一个城市出发可以到达其它所有城市。每个城市信仰不同的宗教,如飞天面条神教、隐形独角兽教、绝地教都是常见的信仰。为了方便,我们用不同的正整数代表各种宗教, S国的居民常常旅行。旅行时他们总会走最短路,并且为了避免麻烦,只在信仰和他们相同的城市留宿。当然旅程的终点也是信仰与他相同的城市。S国政府为每个城市标定了不同的旅行评级,旅行者们常会记下途中(包括起点和终点)留宿过的城市的评级总和或最大值。
在S国的历史上常会发生以下几种事件:
”CC x c”:城市x的居民全体改信了c教;
”CW x w”:城市x的评级调整为w;
”QS x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过的城市的评级总和;
”QM x y”:一位旅行者从城市x出发,到城市y,并记下了途中留宿过
的城市的评级最大值。
由于年代久远,旅行者记下的数字已经遗失了,但记录开始之前每座城市的信仰与评级,还有事件记录本身是完好的。请根据这些信息,还原旅行者记下的数字。 为了方便,我们认为事件之间的间隔足够长,以致在任意一次旅行中,所有城市的评级和信仰保持不变。

Input
输入的第一行包含整数N,Q依次表示城市数和事件数。
接下来N行,第i+l行两个整数Wi,Ci依次表示记录开始之前,城市i的
评级和信仰。
接下来N-1行每行两个整数x,y表示一条双向道路。
接下来Q行,每行一个操作,格式如上所述。

Output
对每个QS和QM事件,输出一行,表示旅行者记下的数字。

Sample Input
5 6
3 1
2 3
1 2
3 3
5 1
1 2
1 3
3 4
3 5
QS 1 5
CC 3 1
QS 1 5
CW 3 3
QS 1 5
QM 2 4
Sample Output
8
9
11
3

分析

题目的询问是对于同一种宗教信仰的,即只涉及一个c,那么一个想法是:把关于相同宗教信仰的操作放在一起。
那么操作CC(修改城市x的宗教信仰)就变成了这样:
设城市x原来信教为c,修改为c’,则在对于c的操作中中把x点的w改为0,在对于c’的操作中把x点的w改为w[x]

再把输入的初始状态看作修改权值,所有操作数不会大于2m+n。

solution

把每种宗教C放在一起,按照输入顺序操作,需要支持修改、查询路径上的最大值、查询路径上w的和。这个很显然是树链剖分了!

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

#define fo(i,a,b) for (int i=a;i<=b;i++)

using namespace std;

const int maxn=100005,maxm=200005,maxq=400005,maxt=524295;

int n,q,m,tot,F,sum,rmq[maxm][18],la[maxn],fa[maxn],dep[maxn],r[maxn],size[maxn],dfn[maxn],ch[maxn],w[maxn],co[maxn],d[maxq];

int tm[maxt],ts[maxt];

char c,p;

struct data
{
    int tot,h[maxn],e[maxq],next[maxq];
    void add(int x,int y)
    {
        e[++tot]=y; next[tot]=h[x]; h[x]=tot;
    }
}E,Q;

struct Operation
{
    int typ,x,y,ans;
}A[maxq];

void dfs(int x)
{
    dep[x]=dep[fa[x]]+1;
    rmq[la[x]=tot++][0]=x;
    for (int i=E.h[x];i;i=E.next[i]) if (E.e[i]!=fa[x])
    {
        fa[E.e[i]]=x;
        dfs(E.e[i]);
        size[x]+=size[E.e[i]]+1;
        rmq[la[x]=tot++][0]=x;
    }
}

void get_dfn(int x)
{
    ch[dfn[x]=++sum]=x;
    r[sum]=F;
    int j=0;
    for (int i=E.h[x];i;i=E.next[i]) if (E.e[i]!=fa[x]) j=(!j || size[j]<size[E.e[i]])?E.e[i]:j;
    if (!j) return;
    get_dfn(j);
    for (int i=E.h[x];i;i=E.next[i]) if (E.e[i]!=fa[x] && E.e[i]!=j)
    {
        F=sum+1;
        get_dfn(E.e[i]);
    }
}

void get_rmq()
{
    int k=(double)log(tot)/log(2);
    fo(j,1,k)
        fo(i,0,tot-(1<<j))
            rmq[i][j]=(dep[rmq[i][j-1]]<=dep[rmq[i+(1<<(j-1))][j-1]])?rmq[i][j-1]:rmq[i+(1<<(j-1))][j-1];
}

void init()
{
    scanf("%d%d",&n,&q);
    fo(i,1,n)
    {
        scanf("%d%d",&w[i],&co[i]);
        A[++m].typ=0; A[m].x=i; A[m].y=w[i];
        Q.add(co[i],m);
    }
    fo (i,2,n)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        E.add(x,y); E.add(y,x);
    }
    while (q--)
    {
        for (c=getchar();c!='Q' && c!='C';c=getchar());p=getchar();
        int x,y;
        scanf("%d%d",&x,&y);
        if (c=='C')
        {
            if (p=='C')
            {
                A[++m].typ=0; A[m].x=x; A[m].y=0;
                Q.add(co[x],m);
                co[x]=y;
                A[++m].typ=0; A[m].x=x; A[m].y=w[x];
                Q.add(co[x],m);
            }else
            {
                A[++m].typ=0; A[m].x=x; A[m].y=y;
                Q.add(co[x],m);
                w[x]=y;
            }
        }else
        {
            if (p=='S')
            {
                A[++m].typ=2; A[m].x=x; A[m].y=y;
                Q.add(co[x],m);
            }else
            {
                A[++m].typ=1; A[m].x=x; A[m].y=y;
                Q.add(co[x],m);
            }
        }
    }
    dfs(1);
    get_rmq();
    F=1;
    get_dfn(1);
}

int get_lca(int x,int y)
{
    x=la[x]; y=la[y];
    if (x>y) x^=y^=x^=y;
    int k=(double)log(y-x+1)/log(2);
    return (dep[rmq[x][k]]<=dep[rmq[y-(1<<k)+1][k]])?rmq[x][k]:rmq[y-(1<<k)+1][k];
}

void change(int l,int r,int g,int v,int x)
{
    if (l==r)
    {
        tm[x]=ts[x]=v; return;
    }
    int mid=(l+r)/2;
    if (g<=mid) change(l,mid,g,v,x*2);else change(mid+1,r,g,v,x*2+1);
    tm[x]=max(tm[x*2],tm[x*2+1]); ts[x]=ts[x*2]+ts[x*2+1];
}

int querym(int l,int r,int a,int b,int x)
{
    if (l==a && r==b) return tm[x];
    int mid=(l+r)/2;
    if (b<=mid) return querym(l,mid,a,b,x*2);
    if (a>mid) return querym(mid+1,r,a,b,x*2+1);
    return max(querym(l,mid,a,mid,x*2),querym(mid+1,r,mid+1,b,x*2+1));
}

int querys(int l,int r,int a,int b,int x)
{
    if (l==a && r==b) return ts[x];
    int mid=(l+r)/2;
    if (b<=mid) return querys(l,mid,a,b,x*2);
    if (a>mid) return querys(mid+1,r,a,b,x*2+1);
    return querys(l,mid,a,mid,x*2)+querys(mid+1,r,mid+1,b,x*2+1);
}

int gets(int x,int y)
{
    if (x==y) return 0;
    int X=dfn[x],Y=dfn[y];
    if (r[X]==r[Y]) return querys(1,n,Y+1,X,1);
    return gets(fa[ch[r[X]]],y)+querys(1,n,r[X],X,1);
}

int getm(int x,int y)
{
    if (x==y) return 0;
    int X=dfn[x],Y=dfn[y];
    if (r[X]==r[Y]) return querym(1,n,Y+1,X,1);
    return max(getm(fa[ch[r[X]]],y),querym(1,n,r[X],X,1));
}

void work()
{
    tot=0;
    fo(i,0,maxn-5)
    {
        tot=0;
        for (int j=Q.h[i];j;j=Q.next[j]) d[tot++]=j;
        for (int j=tot-1;j>=0;j--)
        {
            int typ=A[d[j]].typ,x=A[d[j]].x,y=A[d[j]].y;
            if (!typ) change(1,n,dfn[x],y,1);else
            {
                int lca=get_lca(x,y);
                if (typ==2) A[d[j]].ans=gets(x,lca)+gets(y,fa[lca]);
                else A[d[j]].ans=max(getm(x,lca),getm(y,fa[lca]));
            }
        }
        for (int j=tot-1;j>=0;j--)
            if (!A[d[j]].typ) change(1,n,dfn[A[d[j]].x],0,1);
    }
    fo(i,1,m) if (A[i].typ) printf("%d\n",A[i].ans);
}

int main()
{
    freopen("travel.in","r",stdin); freopen("travel.out","w",stdout);
    init();
    work();
    fclose(stdin); fclose(stdout);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值