题目大意
给你一个n个节点的树,初始时每个点的权值为0,并且每个点上有一个体重为a[i]的人。
现在有m个操作,每个操作有以下几种类型:
1. 给u,v的路径上所有点各放一个体重为value的人。
2. 给u,v的路径上所有点的权值都加上value
3. 询问u,v的路径上总重最大的人
4. 询问u,v的路径上总重最小的人
总重=体重+点的权值
n≤100000 总重在int范围内
时限为9s
分析
时限较宽,会让人浮想联翩。
然而正解就是线段树。
先树链剖分,然后对于一个区间,维护以下几个值:
区间的点权最大值、点权最小值、总重最大值、总重最小值。
那么对于操作1,用value加区间点权最大、最小来更新答案。
操作2:给以上的四个值都加上value
然后还要打标记。
时间复杂度 O(nlog2n)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100005,maxm=200005,Log=16,maxt=262205;
int n,m,tot,tmp,h[maxn],e[maxm],next[maxm],a[maxn],fa[maxn][Log+1],dep[maxn],dfn[maxn],top[maxn],pos[maxn],size[maxn];
int Mina[maxt],Maxa[maxt],Mind[maxt],Maxd[maxt],maskd[maxt],mask_Mina[maxt],mask_Maxa[maxt];
char c;
int read()
{
for (c=getchar();c<'0' || c>'9';c=getchar());
int x=c-48;
for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x;
}
void add(int x,int y)
{
e[++tot]=y; next[tot]=h[x]; h[x]=tot;
}
void init(int x)
{
dep[x]=dep[fa[x][0]]+1;
for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0])
{
fa[e[i]][0]=x;
init(e[i]);
size[x]+=size[e[i]]+1;
}
}
void push_down(int x)
{
if (maskd[x])
{
maskd[x*2]+=maskd[x]; maskd[x*2+1]+=maskd[x];
Mind[x*2]+=maskd[x]; Mind[x*2+1]+=maskd[x];
Maxd[x*2]+=maskd[x]; Maxd[x*2+1]+=maskd[x];
Mina[x*2]+=maskd[x]; Mina[x*2+1]+=maskd[x];
Maxa[x*2]+=maskd[x]; Maxa[x*2+1]+=maskd[x];
maskd[x]=0;
}
if (mask_Mina[x]>=0)
{
mask_Mina[x*2]=(mask_Mina[x*2]==-1)?mask_Mina[x]:min(mask_Mina[x*2],mask_Mina[x]);
mask_Mina[x*2+1]=(mask_Mina[x*2+1]==-1)?mask_Mina[x]:min(mask_Mina[x*2+1],mask_Mina[x]);
mask_Maxa[x*2]=max(mask_Maxa[x*2],mask_Maxa[x]);
mask_Maxa[x*2+1]=max(mask_Maxa[x*2+1],mask_Maxa[x]);
Mina[x*2]=min(Mina[x*2],Mind[x*2]+mask_Mina[x]);
Mina[x*2+1]=min(Mina[x*2+1],Mind[x*2+1]+mask_Mina[x]);
Maxa[x*2]=max(Maxa[x*2],Maxd[x*2]+mask_Maxa[x]);
Maxa[x*2+1]=max(Maxa[x*2+1],Maxd[x*2+1]+mask_Maxa[x]);
mask_Mina[x]=mask_Maxa[x]=-1;
}
}
void inserta(int l,int r,int a,int b,int v,int x)
{
if (l==a && r==b)
{
if (mask_Mina[x]>=0) mask_Mina[x]=min(mask_Mina[x],v);else mask_Mina[x]=v;
mask_Maxa[x]=max(mask_Maxa[x],v);
Mina[x]=min(Mina[x],Mind[x]+mask_Mina[x]); Maxa[x]=max(Maxa[x],Maxd[x]+mask_Maxa[x]);
return;
}
push_down(x);
int mid=(l+r)/2;
if (b<=mid) inserta(l,mid,a,b,v,x*2);else
if (a>mid) inserta(mid+1,r,a,b,v,x*2+1);else
{
inserta(l,mid,a,mid,v,x*2); inserta(mid+1,r,mid+1,b,v,x*2+1);
}
Mina[x]=min(Mina[x*2],Mina[x*2+1]);
Maxa[x]=max(Maxa[x*2],Maxa[x*2+1]);
Mind[x]=min(Mind[x*2],Mind[x*2+1]);
Maxd[x]=max(Maxd[x*2],Maxd[x*2+1]);
}
void insertd(int l,int r,int a,int b,int v,int x)
{
if (l==a && r==b)
{
Mind[x]+=v; Maxd[x]+=v; maskd[x]+=v;
Maxa[x]+=v; Mina[x]+=v;
return;
}
push_down(x);
int mid=(l+r)/2;
if (b<=mid) insertd(l,mid,a,b,v,x*2);else
if (a>mid) insertd(mid+1,r,a,b,v,x*2+1);else
{
insertd(l,mid,a,mid,v,x*2); insertd(mid+1,r,mid+1,b,v,x*2+1);
}
Mina[x]=min(Mina[x*2],Mina[x*2+1]);
Maxa[x]=max(Maxa[x*2],Maxa[x*2+1]);
Mind[x]=min(Mind[x*2],Mind[x*2+1]);
Maxd[x]=max(Maxd[x*2],Maxd[x*2+1]);
}
void dfs(int x)
{
pos[dfn[x]=++tot]=x;
top[tot]=tmp;
inserta(1,n,dfn[x],dfn[x],a[x],1);
int j=0;
for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0] && (!j || size[e[i]]>size[j])) j=e[i];
if (!j) return;
dfs(j);
for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0] && e[i]!=j)
{
tmp=tot+1;
dfs(e[i]);
}
}
int getlca(int x,int y)
{
if (dep[x]<dep[y]) x^=y^=x^=y;
for (int i=Log;i>=0;i--) if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
for (int i=Log;i>=0;i--) if (fa[x][i]!=fa[y][i])
{
x=fa[x][i]; y=fa[y][i];
}
return (x!=y)?fa[x][0]:x;
}
void traveld(int x,int y,int v)
{
if (x==y) return;
x=dfn[x];
int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
insertd(1,n,t,x,v,1);
traveld(fa[pos[t]][0],y,v);
}
void travela(int x,int y,int v)
{
if (x==y) return;
x=dfn[x];
int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
inserta(1,n,t,x,v,1);
travela(fa[pos[t]][0],y,v);
}
int getmin(int l,int r,int a,int b,int x)
{
if (l==a && r==b) return Mina[x];
push_down(x);
int mid=(l+r)/2;
if (b<=mid) return getmin(l,mid,a,b,x*2);
if (a>mid) return getmin(mid+1,r,a,b,x*2+1);
return min(getmin(l,mid,a,mid,x*2),getmin(mid+1,r,mid+1,b,x*2+1));
}
int getmax(int l,int r,int a,int b,int x)
{
if (l==a && r==b) return Maxa[x];
push_down(x);
int mid=(l+r)/2;
if (b<=mid) return getmax(l,mid,a,b,x*2);
if (a>mid) return getmax(mid+1,r,a,b,x*2+1);
return max(getmax(l,mid,a,mid,x*2),getmax(mid+1,r,mid+1,b,x*2+1));
}
int travelmin(int x,int y)
{
if (x==y) return 1e9;
x=dfn[x];
int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
return min(getmin(1,n,t,x,1),travelmin(fa[pos[t]][0],y));
}
int travelmax(int x,int y)
{
if (x==y) return 0;
x=dfn[x];
int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
return max(getmax(1,n,t,x,1),travelmax(fa[pos[t]][0],y));
}
int main()
{
freopen("a.in","r",stdin); freopen("a.out","w",stdout);
n=read(); m=read();
for (int i=1;i<=n;i++) a[i]=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y); add(y,x);
}
init(1);
for (int j=1;j<=Log;j++)
for (int i=1;i<=n;i++) fa[i][j]=fa[fa[i][j-1]][j-1];
tot=0; tmp=1;
memset(Mina,127,sizeof(Mina));
memset(mask_Mina,255,sizeof(mask_Mina));
dfs(1);
while (m--)
{
int typ=read(),x=read(),y=read(),value=read(),lca=getlca(x,y);
if (!typ)
{
traveld(x,lca,value); traveld(y,fa[lca][0],value);
}else if (typ==1)
{
travela(x,lca,value); travela(y,fa[lca][0],value);
}else if (value) printf("%d\n",max(travelmax(x,lca),travelmax(y,fa[lca][0])));
else printf("%d\n",min(travelmin(x,lca),travelmin(y,fa[lca][0])));
}
fclose(stdin); fclose(stdout);
return 0;
}