[16.7.9训练]a

题目大意

给你一个n个节点的树,初始时每个点的权值为0,并且每个点上有一个体重为a[i]的人。
现在有m个操作,每个操作有以下几种类型:
1. 给u,v的路径上所有点各放一个体重为value的人。
2. 给u,v的路径上所有点的权值都加上value
3. 询问u,v的路径上总重最大的人
4. 询问u,v的路径上总重最小的人
总重=体重+点的权值

n≤100000 总重在int范围内
时限为9s

分析

时限较宽,会让人浮想联翩。
然而正解就是线段树。

先树链剖分,然后对于一个区间,维护以下几个值:
区间的点权最大值、点权最小值、总重最大值、总重最小值。

那么对于操作1,用value加区间点权最大、最小来更新答案。
操作2:给以上的四个值都加上value

然后还要打标记。

时间复杂度 O(nlog2n)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=100005,maxm=200005,Log=16,maxt=262205;

int n,m,tot,tmp,h[maxn],e[maxm],next[maxm],a[maxn],fa[maxn][Log+1],dep[maxn],dfn[maxn],top[maxn],pos[maxn],size[maxn];

int Mina[maxt],Maxa[maxt],Mind[maxt],Maxd[maxt],maskd[maxt],mask_Mina[maxt],mask_Maxa[maxt];

char c;

int read()
{
    for (c=getchar();c<'0' || c>'9';c=getchar());
    int x=c-48;
    for (c=getchar();c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x;
}

void add(int x,int y)
{
    e[++tot]=y; next[tot]=h[x]; h[x]=tot;
}

void init(int x)
{
    dep[x]=dep[fa[x][0]]+1;
    for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0])
    {
        fa[e[i]][0]=x;
        init(e[i]);
        size[x]+=size[e[i]]+1;
    }
}

void push_down(int x)
{
    if (maskd[x])
    {
        maskd[x*2]+=maskd[x]; maskd[x*2+1]+=maskd[x];
        Mind[x*2]+=maskd[x]; Mind[x*2+1]+=maskd[x];
        Maxd[x*2]+=maskd[x]; Maxd[x*2+1]+=maskd[x];
        Mina[x*2]+=maskd[x]; Mina[x*2+1]+=maskd[x];
        Maxa[x*2]+=maskd[x]; Maxa[x*2+1]+=maskd[x];
        maskd[x]=0;
    }
    if (mask_Mina[x]>=0)
    {
        mask_Mina[x*2]=(mask_Mina[x*2]==-1)?mask_Mina[x]:min(mask_Mina[x*2],mask_Mina[x]);
        mask_Mina[x*2+1]=(mask_Mina[x*2+1]==-1)?mask_Mina[x]:min(mask_Mina[x*2+1],mask_Mina[x]);
        mask_Maxa[x*2]=max(mask_Maxa[x*2],mask_Maxa[x]);
        mask_Maxa[x*2+1]=max(mask_Maxa[x*2+1],mask_Maxa[x]);
        Mina[x*2]=min(Mina[x*2],Mind[x*2]+mask_Mina[x]);
        Mina[x*2+1]=min(Mina[x*2+1],Mind[x*2+1]+mask_Mina[x]);
        Maxa[x*2]=max(Maxa[x*2],Maxd[x*2]+mask_Maxa[x]);
        Maxa[x*2+1]=max(Maxa[x*2+1],Maxd[x*2+1]+mask_Maxa[x]);
        mask_Mina[x]=mask_Maxa[x]=-1;
    }
}

void inserta(int l,int r,int a,int b,int v,int x)
{
    if (l==a && r==b)
    {
        if (mask_Mina[x]>=0) mask_Mina[x]=min(mask_Mina[x],v);else mask_Mina[x]=v;
        mask_Maxa[x]=max(mask_Maxa[x],v);
        Mina[x]=min(Mina[x],Mind[x]+mask_Mina[x]); Maxa[x]=max(Maxa[x],Maxd[x]+mask_Maxa[x]);
        return;
    }
    push_down(x);
    int mid=(l+r)/2;
    if (b<=mid) inserta(l,mid,a,b,v,x*2);else
    if (a>mid) inserta(mid+1,r,a,b,v,x*2+1);else
    {
        inserta(l,mid,a,mid,v,x*2); inserta(mid+1,r,mid+1,b,v,x*2+1);
    }
    Mina[x]=min(Mina[x*2],Mina[x*2+1]);
    Maxa[x]=max(Maxa[x*2],Maxa[x*2+1]);
    Mind[x]=min(Mind[x*2],Mind[x*2+1]);
    Maxd[x]=max(Maxd[x*2],Maxd[x*2+1]);
}

void insertd(int l,int r,int a,int b,int v,int x)
{
    if (l==a && r==b)
    {
        Mind[x]+=v; Maxd[x]+=v; maskd[x]+=v;
        Maxa[x]+=v; Mina[x]+=v;
        return;
    }
    push_down(x);
    int mid=(l+r)/2;
    if (b<=mid) insertd(l,mid,a,b,v,x*2);else
    if (a>mid) insertd(mid+1,r,a,b,v,x*2+1);else
    {
        insertd(l,mid,a,mid,v,x*2); insertd(mid+1,r,mid+1,b,v,x*2+1);
    }
    Mina[x]=min(Mina[x*2],Mina[x*2+1]);
    Maxa[x]=max(Maxa[x*2],Maxa[x*2+1]);
    Mind[x]=min(Mind[x*2],Mind[x*2+1]);
    Maxd[x]=max(Maxd[x*2],Maxd[x*2+1]);
}

void dfs(int x)
{
    pos[dfn[x]=++tot]=x;
    top[tot]=tmp;
    inserta(1,n,dfn[x],dfn[x],a[x],1);
    int j=0;
    for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0] && (!j || size[e[i]]>size[j])) j=e[i];
    if (!j) return;
    dfs(j);
    for (int i=h[x];i;i=next[i]) if (e[i]!=fa[x][0] && e[i]!=j)
    {
        tmp=tot+1;
        dfs(e[i]);
    }
}

int getlca(int x,int y)
{
    if (dep[x]<dep[y]) x^=y^=x^=y;
    for (int i=Log;i>=0;i--) if (dep[fa[x][i]]>=dep[y]) x=fa[x][i];
    for (int i=Log;i>=0;i--) if (fa[x][i]!=fa[y][i])
    {
        x=fa[x][i]; y=fa[y][i];
    }
    return (x!=y)?fa[x][0]:x;
}

void traveld(int x,int y,int v)
{
    if (x==y) return;
    x=dfn[x];
    int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
    insertd(1,n,t,x,v,1);
    traveld(fa[pos[t]][0],y,v);
}

void travela(int x,int y,int v)
{
    if (x==y) return;
    x=dfn[x];
    int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
    inserta(1,n,t,x,v,1);
    travela(fa[pos[t]][0],y,v);
}

int getmin(int l,int r,int a,int b,int x)
{
    if (l==a && r==b) return Mina[x];
    push_down(x);
    int mid=(l+r)/2;
    if (b<=mid) return getmin(l,mid,a,b,x*2);
    if (a>mid) return getmin(mid+1,r,a,b,x*2+1);
    return min(getmin(l,mid,a,mid,x*2),getmin(mid+1,r,mid+1,b,x*2+1));
}

int getmax(int l,int r,int a,int b,int x)
{
    if (l==a && r==b) return Maxa[x];
    push_down(x);
    int mid=(l+r)/2;
    if (b<=mid) return getmax(l,mid,a,b,x*2);
    if (a>mid) return getmax(mid+1,r,a,b,x*2+1);
    return max(getmax(l,mid,a,mid,x*2),getmax(mid+1,r,mid+1,b,x*2+1));
}

int travelmin(int x,int y)
{
    if (x==y) return 1e9;
    x=dfn[x];
    int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
    return min(getmin(1,n,t,x,1),travelmin(fa[pos[t]][0],y));
}

int travelmax(int x,int y)
{
    if (x==y) return 0;
    x=dfn[x];
    int t=(dep[pos[top[x]]]>dep[y])?top[x]:dfn[y]+1;
    return max(getmax(1,n,t,x,1),travelmax(fa[pos[t]][0],y));
}

int main()
{
    freopen("a.in","r",stdin); freopen("a.out","w",stdout);
    n=read(); m=read();
    for (int i=1;i<=n;i++) a[i]=read();
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read();
        add(x,y); add(y,x);
    }
    init(1);
    for (int j=1;j<=Log;j++)
        for (int i=1;i<=n;i++) fa[i][j]=fa[fa[i][j-1]][j-1];
    tot=0; tmp=1;
    memset(Mina,127,sizeof(Mina));
    memset(mask_Mina,255,sizeof(mask_Mina));
    dfs(1);
    while (m--)
    {
        int typ=read(),x=read(),y=read(),value=read(),lca=getlca(x,y);
        if (!typ)
        {
            traveld(x,lca,value); traveld(y,fa[lca][0],value);
        }else if (typ==1)
        {
            travela(x,lca,value); travela(y,fa[lca][0],value);
        }else if (value) printf("%d\n",max(travelmax(x,lca),travelmax(y,fa[lca][0])));
        else printf("%d\n",min(travelmin(x,lca),travelmin(y,fa[lca][0])));
    }
    fclose(stdin); fclose(stdout);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值