[51nod 1752] 哈希统计

题目描述

int work(char *s,int n,int base,int p)
{
   long long ans=0;
   for(int i=1;i<=n;i++)
        ans=(ans*base+s[i])%p;
   return ans;
}

以上代码为一种字符串hash的写法,给出base和p,试统计长度小于等于n且能使最后hash值为x的字符串(只能包含小写字母)有多少个。

n,p,base≤50000 0≤x<p

分析

hash值可以看成一个base的次数界为n的多项式。
首先考虑最暴力的dp。设f[i][j]表示确定字符串最后i位,hash值模p等于j的方案数。那么枚举倒数第i+1位的字符c,然后f[i][j]转移到 f[i+1][(j+ci)%p]
现在要考虑优化这个dp。假设现在要算f[i][],那么可不可以用f[ i2 ][]算出f[i][]呢?
其实是可以的,假设i是偶数, f[i][(j+ki2)%p]=f[i2][j]f[i2][k]
然后把 f[i2][k] 存到 a[ki2] 里,把模去掉,就是个卷积的形式了。可以用NTT解决。
当i是奇数,可以先算出f[i-1][],然后暴力算出f[i][]。
但是问题求的是长度小于等于n的字符串的答案。那么可以设 g[i][j] 表示长度小于等于i的答案,j的意义一样。然后用g[i/2][]和f[i/2][]用NTT来求出g[i][]。
时间复杂度 O(nlogplogn)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N=131085,mo=998244353;

typedef long long LL;

int n,m,x,base,M,t[N],f[N],g[N],h[N],W[N],r,T,Inv,Ans[N],ss[N];

int quick(int x,int t,int mo)
{
    if (!t) return 1;
    int tmp=quick(x,t>>1,mo);
    tmp=(LL)tmp*tmp%mo;
    if (t&1) tmp=(LL)tmp*x%mo;
    return tmp;
}

void DFT(int *a,int sig)
{
    for (int i=0;i<M;i++)
    {
        int pos=0;
        for (int tmp=i,j=0;j<T;j++,tmp/=2) pos=pos*2+(tmp&1);
        t[pos]=a[i];
    }
    for (int l=2;l<=M;l*=2)
    {
        int half=l>>1,tmp=M/l;
        for (int i=0;i<half;i++)
        {
            int w=(sig==1)?W[i*tmp]:W[M-i*tmp];
            for (int k=i;k<M;k+=l)
            {
                int p=t[k],q=(LL)t[k+half]*w%mo;
                t[k]=(p+q)%mo; t[k+half]=(p-q)%mo;
            }
        }
    }
    for (int i=0;i<M;i++) a[i]=t[i];
}

void solve(int x)
{
    if (x==1) return;
    solve(x>>1);
    memset(g,0,sizeof(g));
    memset(ss,0,sizeof(ss));
    int p=quick(base,x>>1,m);
    for (int i=0;i<m;i++) g[(LL)i*p%m]=(g[(LL)i*p%m]+f[i])%mo,ss[(LL)i*p%m]=(ss[(LL)i*p%m]+Ans[i])%mo;
    DFT(f,1);
    DFT(ss,1);
    DFT(g,1);
    for (int i=0;i<M;i++) ss[i]=(LL)ss[i]*f[i]%mo,f[i]=(LL)f[i]*g[i]%mo;
    DFT(f,-1);
    DFT(ss,-1);
    for (int i=0;i<M;i++) t[i]=(LL)f[i]*Inv%mo;
    memset(f,0,sizeof(f));
    for (int i=0;i<M;i++) f[i%m]=(f[i%m]+t[i])%mo;
    for (int i=0;i<M;i++) t[i]=(LL)ss[i]*Inv%mo;
    for (int i=0;i<M;i++) Ans[i%m]=(Ans[i%m]+t[i])%mo;
    if (x&1)
    {
        memset(g,0,sizeof(g));
        for (int i=0;i<m;i++) g[(LL)i*base%m]=(g[(LL)i*base%m]+f[i])%mo;
        DFT(g,1);
        for (int i=0;i<M;i++) f[i]=(LL)g[i]*h[i]%mo;
        DFT(f,-1);
        for (int i=0;i<M;i++) t[i]=(LL)f[i]*Inv%mo;
        memset(f,0,sizeof(f));
        for (int i=0;i<M;i++) f[i%m]=(f[i%m]+t[i])%mo;
        for (int i=0;i<m;i++) Ans[i]=(Ans[i]+f[i])%mo;
    }
}

int main()
{
    scanf("%d%d%d%d",&n,&base,&m,&x);
    for (int i='a';i<='z';i++) h[i%m]++;
    for (M=1;M<m*2;M=M<<1);
    T=log(M)/log(2);
    Inv=quick(M,mo-2,mo);
    W[0]=1; W[1]=quick(3,(mo-1)/M,mo);
    for (int i=2;i<=M;i++) W[i]=(LL)W[i-1]*W[1]%mo;
    memcpy(f,h,sizeof(f));
    memcpy(Ans,h,sizeof(h));
    DFT(h,1);
    solve(n);
    Ans[x]=(Ans[x]+mo)%mo;
    printf("%d\n",Ans[x]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值