博弈

题目大意

给定一棵n个节点的树。两个人进行博弈,后手的人最初在节点b上,还给定一个目标节点t。
对于后手的人,如果有至少一条未被标记的边连着它所在的节点,那么它必须选择其中一条走过去,并标记下这条边。否则不用动。
对于先手的人,每次可以:1. 删除一条边 2. 删除一条边的标记 3. 不操作。
现在先手者想以最少的操作次数把后手者赶到目标节点(不操作不计算次数),后手者则想最大化这个答案。两个人绝顶聪明,问最少操作次数。

分析

可以把这棵树看成是以t为根的有根树。
首先考虑b和t直接相连的情况。后手者显然是第一步必须往下走。那么先手者要做的就是删去通往操作次数最多的子树的路,然后后手者走次多的子树。然后不断反复直到跑到底。
跑到底后就变成一个有趣的情况了~后手不能动,那么先手可以通过一波操作,使得后手者后来一定是往父亲跑直到走到t。
那么可以设f[i]表示走到i为根的子树的答案。如果它是叶子就直接是它跑到父亲的答案,只有一个儿子就是它+1,否则就是删去f最大的儿子。可以O(n)计算f[]。
现在考虑到b可能不是t的直接儿子,后手者可以跑到一个祖先,然后再进入子树变成上面的情况。
但是我们不需要知道具体的方案!考虑二分答案,然后从下往上枚举那些子树,设B表示当前子树之前的子树需要砍掉多少个,那么如果B+f[i]>mid,就表示这个子树要被砍掉。砍掉它后如果B>dis(b,i),就表示当前能提供的删边次数不足以砍掉这个子树,那么mid偏小了。
时间复杂度 O(nlogn)

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=2e6+5;

typedef long long LL;

int n,tot,B,T,h[N],e[N],nxt[N],f[N],D[N],fa[N],g[N],cnt[N];

bool bz[N];

char c;

int read()
{
    int x=0,sig=1;
    for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
    for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
    return x*sig;
}

void add(int x,int y)
{
    e[++tot]=y; nxt[tot]=h[x]; h[x]=tot;
}

bool check(int mid)
{
    int s=0,d=1,k,i,j;
    for (i=T;i!=B;i=fa[i],d++)
    {
        for (j=h[i],k=0;j;j=nxt[j]) if (!bz[e[j]])
        {
            if (s+f[e[j]]>mid)
            {
                k++;
                if (s+k>d) return 0;
            }
        }
        s+=k;
    }
    return s<=mid;
}

int main()
{
    n=read(); B=read(); T=read();
    for (int i=1;i<n;i++)
    {
        int x=read(),y=read(); add(x,y); add(y,x);
    }
    D[tot=1]=B;
    for (int i=1;i<=tot;i++)
    {
        int x=D[i];
        for (int j=h[x];j;j=nxt[j]) if (e[j]!=fa[x])
        {
            fa[e[j]]=x; D[++tot]=e[j];
        }
    }
    for (int i=T;i;i=fa[i]) bz[i]=1;
    for (int i=2;i<=tot;i++)
    {
        int x=D[i];
        for (int j=h[x];j;j=nxt[j]) if (e[j]!=fa[x] && !bz[e[j]]) cnt[x]++;
        g[x]=g[fa[x]]+cnt[x];
    }
    for (int i=tot;i;i--)
    {
        int x=D[i],m1=0,m2=0;
        if (bz[x]) continue;
        f[x]=0;
        for (int j=h[x];j;j=nxt[j]) if (e[j]!=fa[x])
        {
            if (f[e[j]]>m1)
            {
                m2=m1; m1=f[e[j]];
            }else if (f[e[j]]>m2) m2=f[e[j]];
        }
        if (cnt[x]<2) f[x]=g[x];else f[x]=m2;
    }
    int l,r,mid;
    for (l=0,r=n,mid=l+r>>1;l<r;mid=l+r>>1)
    {
        if (check(mid)) r=mid;else l=mid+1;
    }
    printf("%d\n",l);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值