[jzoj3865/JSOI2014]士兵部署

该博客介绍了JSOI2014竞赛中的一道题目,涉及平面上点的凸包问题。对于每次询问,需要计算在给定点P的基础上,新增加的凸包面积。博主提出首先计算初始凸包,然后处理特殊情况,通过找到过点P的两个切线来确定面积增量。利用二分查找方法确定切线,并通过叉积计算新增面积,整体算法的时间复杂度为O(nlogn)。
摘要由CSDN通过智能技术生成

题目大意

给定平面上n个整点。m次询问,每次给出一个整点P,问n个点加上P之后形成的凸包面积为多少。

n,m≤100000

分析

首先可以给n个点求个凸包,然后就是计算加上P之后凸包增加的面积。
先判掉凸包是一个点或线段的情况。接下来讲一般情况。
如果能找到过点P的两个切线就可以求增加的面积了。
假设P在凸包外面,那么可以考虑先随便在凸包上确定一个点Q,然后直线PQ和凸包有两个交点(如果这条直线恰好是一条切线则只有一个交点)。这样可以把凸包分成两部分,每一部分以P为原点相邻之间求叉积正好是一段正数一段负数,可以二分求切线。
现在问题是如何求另一个交点。容易发现以P为原点时,凸包上除Q外的点也满足一段在PQ左边,一段在PQ右边。所以也可以二分找交点。
确定了两条切线后,可以用叉积求增加的面积。把式子拆开就是一个区间和的形式了。
时间复杂度 O(nlogn)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>

using namespace std;

const int N=1e5+5;

typedef long long LL;

typedef double db;

int
根据引用[1],dp[u][j]表示在u子树中选取恰好j个人时能获得的最大价值。而根据引用,该问题的时间复杂度为O(log2​104×nm)。 对于洛谷P2143 [JSOI2010] 巨额奖金问题,我们可以使用动态规划来解决。具体步骤如下: 1. 首先,我们需要构建一棵树来表示员工之间的关系。树的根节点表示公司的总经理,其他节点表示员工。每个节点都有一个权值,表示该员工的奖金金额。 2. 接下来,我们可以使用动态规划来计算每个节点的dp值。对于每个节点u,我们可以考虑两种情况: - 如果选择节点u,则dp[u][j] = dp[v][j-1] + value[u],其中v是u的子节点,value[u]表示节点u的奖金金额。 - 如果不选择节点u,则dp[u][j] = max(dp[v][j]),其中v是u的子节点。 3. 最后,我们可以通过遍历树的所有节点,计算出dp[u][j]的最大值,即为所求的巨额奖金。 下面是一个示例代码,演示了如何使用动态规划来解决洛谷P2143 [JSOI2010] 巨额奖金问题: ```python # 构建树的数据结构 class Node: def __init__(self, value): self.value = value self.children = [] # 动态规划求解最大奖金 def max_bonus(root, j): dp = [[0] * (j+1) for _ in range(len(root)+1)] def dfs(node): if not node: return for child in node.children: dfs(child) for k in range(j, 0, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-1] + node.value) for child in node.children: for k in range(j, 0, -1): for l in range(k-1, -1, -1): dp[node.value][k] = max(dp[node.value][k], dp[node.value][k-l-1] + dp[child.value][l]) dfs(root) return dp[root.value][j] # 构建树 root = Node(1) root.children.append(Node(2)) root.children.append(Node(3)) root.children[0].children.append(Node(4)) root.children[0].children.append(Node(5)) root.children[1].children.append(Node(6)) # 求解最大奖金 j = 3 max_bonus_value = max_bonus(root, j) print("最大奖金为:", max_bonus_value) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值