题目大意
给定n个数的序列,你需要选出一个数字集(可以为空集),使得原序列中所有未被选的数字恰好是一个非空的区间。
n≤300000,1≤ai≤n
分析
题目等价于被选的数字恰好是一个非空的区间。
对于所有可行的极小区间,它们之间的关系只有两种:包含和没有交集。
那么可以考虑扫一遍这个序列,用单调栈按第一次出现时间维护当前未被扫完的数值。如果栈顶的数值被扫完了,那么一直退栈直到栈空或栈顶元素未被扫完。这样可以得到一个区间。如果区间内没有栈中剩余数值出现,那么它是一个极小答案区间。如果需要拼接,只需加上其左端点前一位的答案即可。
整个过程可以做到 O(n)
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=3e5+5;
typedef long long LL;
int T,n,m,a[N],mx[N],mi[N],f[N],s[N],Top,st[N],sum[N];
LL ans;
char c;
int read()
{
int x=0,sig=1;
for (c=getchar();c<'0' || c>'9';c=getchar()) if (c=='-') sig=-1;
for (;c>='0' && c<='9';c=getchar()) x=x*10+c-48;
return x*sig;
}
void work()
{
n=read();
for (int i=1;i<=n;i++)
{
mx[i]=0; mi[i]=n+1; f[i]=s[i]=0;
}
for (int i=1;i<=n;i++)
{
a[i]=read(); mi[a[i]]=min(mi[a[i]],i); mx[a[i]]=i; s[a[i]]++;
}
ans=Top=0;
for (int i=1,cnt=0;i<=n;i++)
{
sum[i]=sum[i-1];
if (mi[a[i]]==i) st[++Top]=a[i],sum[i]+=s[a[i]];
if (mx[st[Top]]==i)
{
for (;Top>0 && mx[st[Top]]<=i;Top--);
if (i-mi[st[Top+1]]+1==sum[i]-sum[mi[st[Top+1]]-1]) f[i]=f[mi[st[Top+1]]-1]+1;
}
}
for (int i=1;i<=n;i++) ans+=f[i];
printf("%lld\n",ans);
}
int main()
{
for (T=read();T--;work());
return 0;
}