[arc061F] Card Game for Three

题目大意

A,B,C三个人玩游戏,最初每个人分别有n,m,k张牌,每张牌上有字母a,b,c之一,但是不知道每张牌具体是什么。由A先操作,每轮操作者翻出自己牌堆顶的一张牌并弃置,下一轮的操作者是该牌上字母对应的人。不能操作的人赢。问有多少种初始牌的情况能使A胜利。答案模1,000,000,007

1≤n,m,K≤300,000

分析

考虑枚举翻牌序列有x个b,有y个c,那么序列长度应该是n+x+y。由于最后一位一定是a,我们可以不管最后一位。
接下来是n-1个a,x个b,y个c任意排列,两个组合数相乘再乘上3的次幂即可。
这样只能拿部分分,考虑枚举i=x+y,那么:
Ans=m+ki=0Cn1n1+x+y3m+kxy0xm,0yk[x+y=i]Cxi
考虑后面的求和部分。它显然分成三段。形式分别是 Mi=0CiM ki=0CkM ki=tCkM
如果我们知道M=i-1时的总和,要推到M=i时的总和。根据杨辉三角公式,第一种情况直接乘2,第二种是乘2再减掉 Cki1 ,第三种是乘2减掉 Cki1 Ct1i1
复杂度是线性的

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int N=9e5+5,mo=1e9+7;

typedef long long LL;

int n,m,K,ans,Fac[N],Inv[N],p[N];

int C(int n,int m)
{
    return (LL)Fac[n]*Inv[m]%mo*Inv[n-m]%mo;
}

int main()
{
    p[0]=Fac[0]=Inv[0]=Fac[1]=Inv[1]=1; p[1]=3;
    for (int i=2;i<N;i++) Inv[i]=(LL)Inv[mo%i]*(mo-mo/i)%mo;
    for (int i=2;i<N;i++)
    {
        p[i]=p[i-1]*3ll%mo; Fac[i]=(LL)Fac[i-1]*i%mo; Inv[i]=(LL)Inv[i-1]*Inv[i]%mo;
    }
    scanf("%d%d%d",&n,&m,&K); n--;
    if (m<K) swap(m,K);
    for (int i=0,j=1;i<=m+K;i++)
    {
        ans=(ans+(LL)C(n+i,n)*p[m+K-i]%mo*j)%mo;
        if (i<K) j=j*2%mo;
        else if (i>=m) j=(j*2ll-C(i,K)-C(i,i-m))%mo;
        else j=(j*2ll-C(i,K))%mo;
    }
    if (ans<0) ans+=mo;
    printf("%d\n",ans);
    return 0;
}
ARC069 F 题目传送门:https://atcoder.jp/contests/arc069/tasks/arc069_d 题目描述: 给定两个长度为 $n$ 的字符串 $s$ 和 $t$,每个字符都是小写字母。你需要找到一个长度为 $n$ 的字符串 $u$,满足: - 对于所有 $i \in [1,n]$,都有 $u_i \in \{s_i,t_i\}$。 - 对于所有 $i \in [1,n-1]$,都有 $u_i \neq u_{i+1}$。 - 对于所有 $i \in [1,n-2]$,都有 $u_i \neq u_{i+2}$。 求满足条件的字符串 $u$ 的个数,对 $10^9+7$ 取模。 解题思路: 这是一道比较经典的字符串构造问题,可以用 dp 或者数学方法来解决。 方法一:dp 我们可以使用 dp 来解决这个问题。设 $f_{i,j,k}$ 表示构造了前 $i$ 个字符,第 $i$ 个字符为 $j$,且第 $i-1$ 个字符为 $k$ 的方案数。其中,$j \in \{s_i,t_i\}$,$k \in \{s_{i-1},t_{i-1}\}$。 状态转移方程如下: $$f_{i,j,k} = \sum\limits_{l \in \{s_{i-2},t_{i-2}\},l \neq j} f_{i-1,k,l}$$ 最终的答案为 $\sum\limits_{j \in \{s_n,t_n\}} \sum\limits_{k \in \{s_{n-1},t_{n-1}\}} f_{n,j,k}$。 时间复杂度为 $O(n)$。 方法二:数学 我们可以定义 $a_i$ 表示以 $s_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$b_i$ 表示以 $s_i$ 结尾,且存在相邻字符相等的字符串的方案数;$c_i$ 表示以 $t_i$ 结尾,且不存在相邻字符相等的字符串的方案数;$d_i$ 表示以 $t_i$ 结尾,且存在相邻字符相等的字符串的方案数。 根据题目的限制条件,我们可以得到递推式: $$\begin{cases} a_{i+1} = 2(b_i+c_i+d_i) \\ b_{i+1} = a_i \\ c_{i+1} = 2(a_i+d_i) \\ d_{i+1} = b_i \end{cases}$$ 初始状态为 $a_1=1,b_1=0,c_1=1,d_1=1$。 最终的答案为 $a_n+c_n$。 时间复杂度为 $O(n)$。 代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值