决策树算法

决策树算法

决策树是一种基本的分类回归方法。在分类问题中,表示基于特征对实例进行分类的过程。

决策树的学习一般包括3个步骤:

  1. 特征选择;

  2. 决策树的生成;

  3. 决策树的修剪。

特征的选择:

特征的选择一般准则为信息增益(ID3),信息增益比(C4.5)和基尼指数(CART)。本文重点介绍信息增益算法。

计算信息增益一般分为3个步骤:

(1): 计算数据集D的熵H(D)

## H(D)=−∑k=1K|Ck||D|log2|Ck||D|

k指的是数据集的类别数
(2):计算特征A对训练数据集D的条件熵H(D|A)

在这里插入图片描述

n指的是特征可能取值的种类数
(3):计算信息增益

在这里插入图片描述

for example:

给定数据:

在这里插入图片描述

根据信息增益准则选择最优特征:

在这里插入图片描述

不难发现上式为二项式,因此k值为2

在这里插入图片描述
在这里插入图片描述

决策树的生成:

这里我们主要使用ID3算法,主要还是信息增益的使用。

在这里插入图片描述

现在树建好了,我们不难,此时建好的决策树多已有的数据分类的很好,但是对未知的数据预测很差,这种算法容易产生过拟合。

当然,决策树的修剪一定程度上可以解决过拟合问题,一般修剪分为预剪枝和后剪枝。

预剪枝就是在树的构建过程(只用到训练集),设置一个阈值(样本个数小于预定阈值或GINI指数小于预定阈值),使得当在当前分裂节点中分裂前和分裂后的误差超过这个阈值则分列,否则不进行分裂操作。
后剪枝是在用训练集构建好一颗决策树后,利用测试集进行的操作。

具体剪枝的实现本文暂且不予实现

下面我们用代码来实现ID3算法:

写之前我们要思考怎么封装代码可以提高效率
1.我们需要创建数据集的函数
2.我们要根据给定的数据集计算经验熵H(D)
3.在生成决策树时因为数据集的改变经验熵也在发生改变,因此要划分数据集
4.根据信息增益算法选择最好特征
5.利用字典的结构递归的创建决策树
6.使用决策树进行分类
7.对建好的决策树进行保存,为下次使用节省时间,避免重复创造

代码:

from math import log
import pickle


def creatDataset():
    # 数据集
    dataSet = [[0, 0, 0, 0, 'no'],
               [0, 0, 0, 1, 'no'],
               [0, 1, 0, 1, 'yes'],
               [0, 1, 1, 0, 'yes'],
               [0, 0, 0, 0, 'no'],
               [1, 0, 0, 0, 'no'],
               [1, 0, 0, 1, 'no'],
               [1, 1, 1, 1, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [1, 0, 1, 2, 'yes'],
               [2, 0, 1, 2, 'yes'],
               [2, 0, 1, 1, 'yes'],
               [2, 1, 0, 1, 'yes'],
               [2, 1, 0, 2, 'yes'],
               [2, 0, 0, 0, 'no']]
    # 分类属性
    labels = ['年龄', '有工作', '有自己的房子', '信贷情况']
    return dataSet, labels


# 计算给定数据的经验熵
def calexShang(dataSet):
    num = len(dataSet)
    # 在字典里存储每个类别的数量
    labelcount = {}
    for val in dataSet:
        if val[-1] not in labelcount.keys():
            labelcount[val[-1]] = 1
        else:
            labelcount[val[-1]] += 1
    result = 0.0
    for key in labelcount:
        result -= ((float(labelcount[key])) / num) * log((float(labelcount[key])) / num, 2)
    return result


# 按照给定特征划分数据集
# axis:划分数据集的特征,value:特征可能的取值
def splitDataSet(dataSet, axis, value):
    reDataSet = []
    for val in dataSet:
        if val[axis] == value:
            x = val[:axis]
            # 得到一个删除此特征的列表
            x.extend(val[axis + 1:])
            reDataSet.append(x)
    # 列表中extend和append是有区别的
    # >>> a = [1,2,3]
    # >>> b = [4,5,6]
    # >>> a.append(b)
    # >>> a
    # [1,2,3,[4,5,6]]
    # >>>a.extend(b)
    # >>>a
    # [1,2,3,4,5,6]
    return reDataSet


# 根据信息增益选择最好的数据集划分方式
def chooseSplit(dataset):
    num = len(dataset[0]) - 1
    ok = 0.0
    count = -1  # 标记最好的特征的索引
    # H(D)
    basicval = calexShang(dataset)
    for i in range(num):
        news = 0.0
        # 返回dataSet的列
        # [1, 1, 1, 0, 0]
        # [1, 1, 0, 1, 1]
        fealist = [example[i] for example in dataset]
        # 去重l
        vals = set(fealist)
        for value in vals:
            subDataSet = splitDataSet(dataset, i, value)
            prob = len(subDataSet) / float(len(dataset))
            news += prob * calexShang(subDataSet)
        result = basicval - news
        # 取信息增益大的特征为最优特征
        if result > ok:
            ok = result
            count = i
    return count


# 如果数据集已经处理了所有属性,但分类依然不唯一,则采取多数表决的方式确定分类(类似KNN的多数表决)
def ensureClassify(classList):
    classCount = {}
    for vote in classList:
        classCount[vote] = classCount.get(vote, 0) + 1
    Realresult = sorted(classCount.items(), key=lambda item: item[1], reverse=True)
    return Realresult[0][0]


# 创建决策树(递归)
def creatTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]
    # 如果类别相同,停止继续划分
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    # 如果数据集已经处理了所有属性,但分类依然不唯一,则采取多数表决的方式确定分类
    if len(dataSet[0]) == 1:
        return ensureClassify(classList)
    bestFest = chooseSplit(dataSet)  # 得到最优特征的索引
    bestFestLabel = labels[bestFest]
    # 用字典的结构建树
    myTree = {bestFestLabel: {}}
    del (labels[bestFest])  # 删除当前最优特征
    # 注意:del方法删除的是变量,而不是数据
    # a=1       对象 1 被 变量a引用,对象1的引用计数器为1
    # b=a        对象1 被变量b引用,对象1的引用计数器加1
    # c=a       1对象1 被变量c引用,对象1的引用计数器加1
    # del a     删除变量a,解除a对1的引用
    # del b     删除变量b,解除b对1的引用
    # print(c)  最终变量c仍然引用1
    # li=[1,2,3,4,5]  列表本身不包含数据1,2,3,4,5,而是包含变量:li[0] li[1] li[2] li[3] li[4]
    # first=li[0]     拷贝列表,也不会有数据对象的复制,而是创建新的变量引用
    # del li[0]
    # print(li)      输出[2, 3, 4, 5]
    # print(first)   输出 1
    featValue = [example[bestFest] for example in dataSet]  # 得到最优特征的所有属性值
    uniqueVals = set(featValue)  # 去重
    for value in uniqueVals:
        subLabels = labels[:]  # 复制特征种类
        # 递归建树
        # 使用嵌套字典构造树结构
        myTree[bestFestLabel][value] = creatTree(splitDataSet(dataSet, bestFest, value), subLabels)
    return myTree
    # 构造的字典大概是这样
    # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}


# 使用决策树进行分类(递归)
# testFeat:样例特征
def classify(inputTree, Labels, testFeat):
    firstStr = list(inputTree.keys())[0]  # 表示根节点
    secondDict = inputTree[firstStr]  # 表示根节点的儿子
    featIndex = Labels.index(firstStr)  # 标签的索引
    for key in secondDict.keys():
        if testFeat[featIndex] == key:
            # 如果不是叶子节点,递归继续遍历
            if type(secondDict[key]) == dict:
                classLable = classify(secondDict[key], Labels, testFeat)
            else:
                classLable = secondDict[key]
    return classLable


# 将决策树保存在硬盘上
def storeTree(inputTree, filename):
    fw = open(filename, 'wb+')
    pickle.dump(inputTree, fw)
    fw.close()


# 读取保存的决策树的内容
def grabTree(filename):
    fr = open(filename, 'rb')
    return pickle.load(fr)


dataSet, labels = creatDataset()
tree = creatTree(dataSet, labels)
print(tree)
# 将对象序列化为string形式,而不是存入文件中。
# storeTree(tree, 'classifyTree.txt')
print(grabTree('classifyTree.txt'))
dataSet, labels = creatDataset()
print(classify(tree, labels, [0, 1, 0, 0]))

谢谢大家!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值