Jensen不等式
- 若f是凸函数:(以离散的角度来看,连续的同理)
f ( θ x + ( 1 − θ ) y ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x +(1-\theta)y \leq \theta f(x) +(1-\theta)f(y) f(θx+(1−θ)y≤θf(x)+(1−θ)f(y)
其中 x 和 y 为f凸函数上任意两点, θ ∈ ( 0 , 1 ) \theta \in(0,1) θ∈(0,1) - 若 θ 1 , . . . , θ k ≥ 0 , θ 1 + . . . + θ k = 1 \theta_{1},...,\theta_{k}\geq 0,\theta_1+...+\theta_k=1 θ1,...,θk≥0,