算法进阶--EM算法

本文深入探讨了EM(期望最大化)算法,特别是用于估计混合高斯模型(GMM)参数的情况。通过Jensen不等式解释了EM算法的数学原理,并详细介绍了算法的迭代过程,包括如何处理对数似然函数中的加性和隐随机变量的问题。文章还阐述了如何利用Jensen不等式优化求解过程,以达到参数估计的局部最大值。
摘要由CSDN通过智能技术生成

算法进阶--EM算法

Jensen不等式

  • 若f是凸函数:(以离散的角度来看,连续的同理)
    f ( θ x + ( 1 − θ ) y ≤ θ f ( x ) + ( 1 − θ ) f ( y ) f(\theta x +(1-\theta)y \leq \theta f(x) +(1-\theta)f(y) f(θx+(1θ)yθf(x)+(1θ)f(y)
    其中 x 和 y 为f凸函数上任意两点, θ ∈ ( 0 , 1 ) \theta \in(0,1) θ(0,1)
  • θ 1 , . . . , θ k ≥ 0 , θ 1 + . . . + θ k = 1 \theta_{1},...,\theta_{k}\geq 0,\theta_1+...+\theta_k=1 θ1,...,θk0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值