数学里的证明

证明

接下来开始我们下一个篇章证明

圆上点连线的区域分割规律与数学序列的关系

下图中画出了五个圆,第一个圆上标出了一个点,第二个圆上标出了两个点,依此类推。连结这些圆上点的所有可能直线段都画了出来,这些线段将圆分割成若干区域。去数一数每个圆的区域数的话,会得到序列1,2,4,8,16。我们可以立刻辨别出这个序列:似乎圆上每添加一个新的点,区域个数就会加倍,因而n个点就分出了 2 n − 1 2^{n-1} 2n1块区域—至少在没有三线共点的情况下。
在这里插入图片描述

数学中的证明:扫清疑点与确凿可靠性的追求

然而,数学家很少会对“似乎”这样的用语感到满意。他们所需要的是证明,也就是能够扫清一条论断中所有疑点的论证。可是,这究竟是什么意思呢?尽管我们常常可以立论,在虑及所有情理之中的怀疑时认为论断正确;但如果要下结论说我们的论证扫清了一切的疑点,那我们必定要更上一层楼。历史学家能够给出许多例子来说明,一些论断一度被认为毋庸置疑,而后来却被证明是错误的,其中有一部分就是数学方面的论断。为什么当今数学中的定理与此会有所不同呢?我在下面的文章将回答这一问题,给出几个证明的例子来,并从中概括出一些一般性的结论来。

总结

通过对圆上点连线的区域分割规律与数学序列关系的探究,我们发现了一个有趣的现象:每添加一个新的点,圆的区域个数会加倍,即每个圆的区域数可以表示为2的n-1次方,其中n为圆上点的个数。虽然我们一开始使用了“似乎”这样的词语,但数学家并不满足于这样的表述,而是追求证明,即能够消除一切疑点的论证。历史上有许多论断被认为是毋庸置疑的,但后来被证明是错误的,包括一些数学定理。然而,当今数学中的定理具有更高的可靠性,因为它们经过了严格的证明。在后续的文章中,我们给出了几个证明的例子,并从中总结出了一些一般性的结论。通过持续的证明和追求确凿可靠性,数学家们能够建立起一套可信的数学理论体系。

  • 13
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
水库抽样算法是一种用于估计大规模数据集中某个属性的方法。它的基本思想是在不遍历整个数据集的情况下,通过随机抽样的方式获取部分数据来进行估计。 数学上,我们可以用概率论的方法来证明水库抽样算法的有效性。设想我们有一个包含N个元素的数据集,我们希望通过抽样得到一个大小为k的样本,其中每个元素被选中的概率都是相等的。 假设我们进行一次抽样,某个元素被选中的概率为p。由于每个元素被选中的概率相等,所以我们可以得到如下等式: p = k / N 假设我们进行了m次抽样,每次都独立地选择元素。现在我们来考虑某个特定的元素,在m次抽样中都没有被选中的概率。 在第一次抽样中,该元素没有被选中的概率为 (1-p) = (N-k)/N 在第二次抽样中,该元素没有被选中的概率也为 (N-k)/N 以此类推,在m次抽样中都没有被选中的概率为 ((N-k)/N)^m 现在我们来考虑该元素至少在m次抽样中被选中一次的概率。这个概率可以用1减去上面的概率来计算,即: 1 - ((N-k)/N)^m 当m趋近于无穷大时,上式中的 ((N-k)/N)^m 会趋近于0,所以该元素至少在m次抽样中被选中一次的概率会趋近于1。这意味着随着抽样次数的增加,每个元素被选中的机会趋近于相等,满足我们的要求。 综上所述,通过数学证明我们可以得出结论:水库抽样算法能够以相等的概率对数据集中的每个元素进行抽样,从而实现对整个数据集进行估计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆梦九洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值