极限与无穷之1.2的平方根约为1.414 213 56

1.2的平方根约为1.414 213 56

揭开数学之谜:2的平方根与无穷的奥秘

上面这条简单陈述仅仅在说一个不大的数差不多等于另一个数,哪里涉及无穷了呢?答案就藏在“2的平方根”这个短语里面,这个短语隐含假设了2的确存在一个平方根。要想透彻地理解这条陈述,我们就必须问一问,2的平方根究竟是个什么样的对象。于是无穷就来了:2的平方根是一个无穷小数。

探索无穷小数乘法:揭秘数学中的困惑和挑战

注意,下面这条紧密相关的陈述就不涉及无穷的问题:1.414 213 56平方约为2。这条陈述完全是有限的,但是看起来所谈论的基本上是同样的事情。我们稍后就能看到,这一点至关重要。
说一个无穷小数的平方等于2,这是什么意思呢?在学校里,我们学过有限小数如何相乘,但从没学过无穷小数的乘法——不知出于什么缘故,我们仅仅假设它们能够参与加法和乘法,而不去深究。这运算应该如何完成呢?为了看看会出现何种困难,我们先来考虑加法。当我们把两个有限小数相加时,比方说2.3859加3.1405,我们将一个数写在另一个数下面,从右向左将对应的数位相加。我们从最末端的数位开始做加法——9加5,得到14,于是写下4,并进1。接下来,我们再加倒数第二位——5加0,以及进上来的1,得到6。依此类推,我们就得到了最终的结果5.5264。

无穷小数相加:修正与意义的探索

现在假设有两个无穷小数。我们不可能从最右端开始,因为无穷小数根本没有最后一位。那么我们要如何把它们相加呢?有一个明显的回答:从左端开始。然而这么做是有缺陷的。比如,我们再来加有限小数2.3859和3.1405,先加2和3,得到5。接下来再加3和1,得到4,很不幸,这是不对的。
这个错误给我们造成了一点麻烦,不过只要我们保持勇气继续下去倒也没什么大不了的。接下来要相加的两个数字是8和4,我们可以在这第三位上记下一个2,然后将上一位的4改为5加以修正。这个过程还会出现,在第四位我们会先写下一个5,然后修正为6。
注意,这样的修正有可能会在写下该位结果的很久之后才出现。例如,我们要计算1.355 555 555 555 555 557 3加2.544 444 444 444 444 445 2,会首先写下3.899 999 999 999 999 99,但再往下算一位,即7加5时这一连串的9就不得不修正。就像一连串多米诺骨牌一样,这些9一位接一位地变为0。不过这样的计算方法仍然是行得通的,最后得到计算结果3.900 000 000 000 000 002 5,它让我们能够对如何将无穷小数相加赋予意义。不难看出,没有哪一位数需要修正一次以上,所以如果我们有两个无穷小数,那么两数之和的第53位(打个比方),要么是我们在上述过程的第53步写下的那个数,要么是之后修正的那个数—如果有必要修正的话。

探索无穷小数乘法:揭开无穷小数平方等于2的奥秘

我们想要对这一论断赋予意义:存在一个无穷小数,其平方为2。要做到这一点,我们必须首先看一看这个无穷小数是怎样产生的,然后再去理解让它和自己相乘意味着什么。可以预料到,无穷小数的乘法会比加法更为复杂。
首先,有一个产生这个小数的很自然的办法。这个数肯定在1和2之间,因为 1 2 = 1 1^2=1 12=1,小于2,而 2 2 = 4 2^2=4 22=4,大于2。如果你一 一计算 1. 1 2 , 1. 2 2 , 1. 3 2 1.1^2,1.2^2,1.3^2 1.121.221.32,一直到 1. 9 2 1.9^2 1.92,你会发现 1. 4 2 = 1.96 1.4^2=1.96 1.42=1.96小于2,而 1. 5 2 = 2.25 1.5^2=2.25 1.52=2.25大于2。所以 2 \sqrt{2} 2 必然在1.4和1.5之间,因此它的小数展开一定是以1.4开头。现在假设你已经以此办法算出 2 \sqrt{2} 2 的前八位数字是1.414 213 5。你可以继续如下的计算,得到下一位数字是6。
1.414   213   5 0 2 = 1.999   999   823   682   250   0 1.414\,213\,50^2=1.999\,999\,823\,682\,250\,0 1.414213502=1.9999998236822500 1.414   213   5 1 2 = 1.999   999   851   966   520   1 1.414\,213\,51^2=1.999\,999\,851\,966\,520\,1 1.414213512=1.9999998519665201 1.414   213   5 2 2 = 1.999   999   880   250   790   4 1.414\,213\,52^2=1.999\,999\,880\,250\,790\,4 1.414213522=1.9999998802507904 1.414   213   5 3 2 = 1.999   999   908   535   060   9 1.414\,213\,53^2=1.999\,999\,908\,535\,060\,9 1.414213532=1.9999999085350609 1.414   213   5 4 2 = 1.999   999   936   819   331   6 1.414\,213\,54^2=1.999\,999\,936\,819\,331\,6 1.414213542=1.9999999368193316 1.414   213   5 5 2 = 1.999   999   965   103   602   5 1.414\,213\,55^2=1.999\,999\,965\,103\,602\,5 1.414213552=1.9999999651036025 1.414   213   5 6 2 = 1.999   999   993   387   873   6 1.414\,213\,56^2=1.999\,999\,993\,387\,873\,6 1.414213562=1.9999999933878736 1.414   213   5 7 2 = 2.000   000   021   672   144   9 1.414\,213\,57^2=2.000\,000\,021\,672\,144\,9 1.414213572=2.0000000216721449
重复这一过程,你想算出多少位都可以。虽然这样的计算永远无法结束,但是你至少有了一种清晰明了的方法,能给定小数点后第n位的数字,无论n取何值:小数点后有n位数,平方不大于2的最大小数, 2 \sqrt{2} 2 的小数点后第n位数字就与它的最后一位相同。例如,在所有小数点后有两位的小数中,1.41是平方不大于2的最大的一个,所以 2 \sqrt{2} 2 展开到小数点后两位是1.41。

无穷小数乘法之谜:解析1.999 999⋯等于2的奥秘

让我们记该终得出的无穷小数为x。是什么让我们能够坚信 x 2 = 2 x^2=2 x2=2呢?我们可能会给出如下的理由。
1 2 = 1 1^2=1 12=1 1. 4 2 = 1.96 1.4^2=1.96 1.42=1.96 1.4 1 2 = 1.988   1 1.41^2=1.988\,1 1.412=1.9881 1.41 4 2 = 1.999   396 1.414^2=1.999\,396 1.4142=1.999396 1.414   2 2 = 1.999   961   64 1.414\,2^2=1.999 \,961\,64 1.41422=1.99996164 1.414   2 1 2 = 1.999   989   924   1 1.414\,21^2=1.999 \,989\,924\,1 1.414212=1.9999899241 1.414   21 3 2 = 1.999   998   409   469 1.414\,213^2=1.999 \,998\,409\,469 1.4142132=1.999998409469 1.414   213   5 2 = 1.999   999   823   682   25 1.414\,213\,5^2=1.999 \,999\,823\,682\,25 1.41421352=1.99999982368225 1.414   213   5 6 2 = 1.999   999   993   387   873   6 1.414\,213\,56^2=1.999 \,999\,993\,387\,873\,6 1.414213562=1.9999999933878736
上述算式列表显示了, 2 \sqrt{2} 2 的小数展开位数越多,自身相乘得到的小数点后的数字9就越多。因此,如果把 2 \sqrt{2} 2 完整地展开到无穷多位,我们应该得到无穷多个9,而1.999 999 99•••(9无限循环)等于2。
这样的论述会导致两个困难。其一,为什么1.999 999⋯等于2?其二,也是更严重的一个问题,“完整地展开到无穷多位”是什么意思?这是我们首先想努力搞懂的问题。

传统习惯与数学规则:探索1.999 999⋯等于2的意义

为了解决第一个困难,我们必须再次搁置一切直觉。在数学中,人们的确普遍认为1.999 999⋯等于2,但这个事实并不是经由某种形而上学的推理过程发现的。相反,它只是种传统习惯。但这也绝不是毫无理由的传统,因为如果不采纳它,我们就必须发明怪异的新对象,或者抛弃一些熱悉的算术规则。比如,如果你坚持1.999 999⋯不等于2,那么2-1.999999…是什么呢?如果这是0,那么你也就抛弃了一条有用的规则:若x-y=0,则x必定与y相等。如果这不是0,那这个数就没有通常的小数展牙(否则,你从2中减掉这个数,得到的就不是1.999 999⋯,而是较小的别的数),所以你必须创造一个新的对象,诸如“0加小数点后无穷多个0,之后是个1”。如果做这样的事,那你的麻烦才刚刚开始。这个神秘的数自乘是什么东西呢?小数点后无穷多个0,之后再来无穷多个0,之后是个1?如果你用它乘以10呢?你得到的是不是“无穷多减1”个0,之后是个1? 1/3的小数展开是什么呢?用它乘以3,答案是1还是0.999999⋯?如果你遵循了惯用的传统,这一类难以对付的问题就不会产生了。(虽难以对付,但也并非全然不可能:在1960年代,亚伯拉罕•罗宾逊发现了对“无穷小”数的一个条理清晰的定义,但正如其名“非标准分析”所暗指的,这套理论还没有成为数学界的主流部分。)

逐步逼近无穷小数乘法:寻找平方以1.999⋯开始的数值的方法

第二个困难是更实实在在的困难,但它也是可以绕过去的。我们不去试图想象对无穷小数进行长乘计算,而仅仅将陈述 x 2 = 2 x^2=2 x2=2解释为,x展开位数越多,平方的结果就越接近2,一如我们已经观察到的。为了更确切地说明这一点,假设你仍然坚持想要一个数,它的平方以1.9999⋯开始。我会向你建议1414 21这个数,它是由x的前几位给出的。因为1.414 21很接近1414 22.我预期它们的平方也会很接近(这很容易证明)。但根据我们选择x的办法,必然有 1.414   2 1 2 1.414\,21^2 1.414212小于2而 1.414   2 2 2 1.414\,22^2 1.414222大于2。因而这两个数都很接近于2。只要检查一下: 1.414   2 1 2 = 1.999   989   924   1 1.414\,21^2=1.999\,989\,924\,1 1.414212=1.9999899241,于是我们就找到了满足条件的一个数。如果你想要一个新的数,其平方开始几位是1.999 999 999 999 999 999 999 999 999 999⋯
那我可以用同样的办法,只不过多取x几位而已。(事实上,如果你想要n个9,那取到小数点后n+1位就足够了。)无论你想要多少个9,我都可以办到,这一事实正是无穷小数x自乘等于2的含义。

简化与复杂:探讨无穷小数乘法的含义与抽象思考的重要性

请注意,我所做的是“驯服”无穷,只是将涉及无穷的陈述单纯解读为一种生动的简化,其所指的乃是一条不涉及无穷的累赘得多的陈述。关于无穷的简洁陈述是“x是平方等于2的无穷小数”。可以大致翻译成:“有这样一种规则,对任意n,它能够切实地给出x的前n位数字。这使我们能够算出任意长的有限小数,它们的平方接近于2,只要算得足够长,想要有多接近就能有多接近。”
我是不是在说, x 2 = 2 x^2=2 x2=2这个外表简单的陈述的真正意思其实非常复杂呢?某种意义上我的确是这个意思一一这条陈述确实隐含了复杂性:但从更重要的意义上讲,我并非指这个意思。固然,在不提及无穷的情况下,要定义无穷小数的加法和乘法是很难的,而且我们还必须检查这个复杂的定义遵从第二系列中列出的那些规则,诸如交换律和结合律。但是,一旦给出了这个定义,我们就可以再次无拘无束地进行抽象思考。关于x,重要的是它的平方等于2。关于“平方”一词,重要的是它的含义以某种乘法定义为基础,这种定义遵循着恰当的规则。x的第一万亿位是什么并不是真正紧要的,乘法的定义有多复杂也不真正紧要。

总结

我们深入探讨了无穷小数乘法的概念与含义,特别是关于1.999 999⋯等于2的问题。我们发现,对于无穷小数的乘法,我们可以通过逐步逼近的方法来寻找平方以1.999⋯开始的数值。这种方法可以通过选择一个足够接近2的有限小数作为起点,并逐步增加其位数来得到更接近2的数值。通过这种方式,我们可以找到满足条件的无穷小数。

然而,在讨论中我们也遇到了一些挑战和困惑。其中一个挑战是如何解释无穷小数的加法和乘法,尤其是在涉及无穷多位的情况下。我们必须重新思考和定义这些运算,以确保它们符合数学规则。另一个挑战是理解无穷小数的精确含义,尤其是在考虑到它们的无限性和无法完全展开的特性时。在这种情况下,我们必须使用抽象思考来处理这些问题,并意识到某些细节并不影响整体的理解和结果。

最后,我们强调了传统习惯对于1.999 999⋯等于2的认可,尽管这种认可并非基于形而上学的推理,但它是为了维持数学的一致性和运算规则而采取的便捷方法。如果我们拒绝接受这个传统习惯,我们将面临更多复杂的问题和定义,并需要创造新的数学对象来解决这些问题。

无穷小数乘法的讨论揭示了数学中的一些困惑和挑战,同时也强调了简化和抽象思考的重要性。在理解和应用数学原理时,我们需要平衡传统习惯和规则的约定与对问题本质的深入思考。

  • 16
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆梦九洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值