基于朴素贝叶斯公式进行商品评价情感分析
import numpy as np
import pandas as pd
import jieba
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
#读入数据
data=pd.read_json("work/情感倾向.json")
# 2. 数据基本处理
#2.1 取出内容列,对数据进行分析
content = data["内容"]
# 2.2 选择停用词
# 加载停用词
stopwords = []
with open("work/停用词.txt" ,'r', encoding="utf-8") as f:
lines = f.readlines()
for tmp in lines:
line = tmp.strip()
stopwords.append(line)
# 2.3 把“内容”转换为标准格式
comment_lst = []
for tmp in content:
print("原始数据:", tmp)
# 通过结巴分词对文本数据进行切割(把一句句话变成一个个词)
seg_lst = jieba.cut(tmp, cut_all=False)
print("切割后的数据", seg_lst)
# 拼接字符串
seg_str = ','.join(seg_lst)
print("拼接后的字符串:", seg_str)
comment_lst.append(seg_s