商品评论情感分析

本文介绍了如何运用Python的sklearn库中的朴素贝叶斯方法对商品评价进行情感分析,包括数据预处理(如分词、停用词去除)、特征提取(词频统计)以及训练集和测试集的划分,最终评估模型在13条数据上的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   基于朴素贝叶斯公式进行商品评价情感分析

import numpy as np
import pandas as pd
import jieba
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

#读入数据
data=pd.read_json("work/情感倾向.json")

# 2. 数据基本处理
#2.1 取出内容列,对数据进行分析
content = data["内容"]

# 2.2 选择停用词
# 加载停用词
stopwords = []
with open("work/停用词.txt" ,'r', encoding="utf-8") as f:
    lines = f.readlines()
    for tmp in lines:
        line = tmp.strip()
        stopwords.append(line)

# 2.3 把“内容”转换为标准格式
comment_lst = []
for tmp in content:
    print("原始数据:", tmp)
    
    # 通过结巴分词对文本数据进行切割(把一句句话变成一个个词)
    seg_lst = jieba.cut(tmp, cut_all=False)
    print("切割后的数据", seg_lst)
    
    # 拼接字符串
    seg_str = ','.join(seg_lst)  
    print("拼接后的字符串:", seg_str)
    comment_lst.append(seg_s
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值