中国人工智能学会最新发布:LLM大模型技术白皮书

近期,中国人工智能学会发布了《中国人工智能大模型技术白皮书》,系统梳理了大模型技术演进,深入探讨关键技术要素,并剖析当前挑战及未来展望。 我为大家做了简要总结。

目录

第 1 章 大模型技术概述 …5
  • 1.1 大模型技术的发展历程 …5

  • 1.2 大模型技术的生态发展 …9

  • 1.3 大模型技术的风险与挑战 …11

第 2 章 语言大模型技术 …13
  • 2.1 Transformer 架构…13

  • 2.2 语言大模型架构 …17

  • 2.2.1 掩码语言建模 …17

  • 2.2.2 自回归语言建模 …18

  • 2.2.3 序列到序列建模 …18

  • 2.3 语言大模型关键技术 …19

  • 2.3.1 语言大模型的预训练 …19

  • 2.3.2 语言大模型的适配微调 …21

  • 2.3.3 语言大模型的提示学习 …24

  • 2.3.4 语言大模型的知识增强 …26

  • 2.4.5 语言大模型的工具学习 …27

第 3 章 多模态大模型技术 …29
  • 3.1 多模态大模型的技术体系 …29

  • 3.1.1 面向理解任务的多模态大模型… 29

  • 3.1.2 面向生成任务的多模态大模型 …31

  • 3.1.3 兼顾理解和生成任务的多模态大模型…33

  • 3.1.4 知识增强的多模态大模型 …35

  • 3.2 多模态大模型的关键技术 …36

  • 3.2.1 多模态大模型的网络结构设计 …363

  • 3.2.2 多模态大模型的自监督学习优化 …37

  • 3.2.3 多模态大模型的下游任务微调适配 …39

第 4 章 大模型技术生态 …41
  • 4.1 典型大模型平台 …41

  • 4.2 典型开源大模型 …44

  • 4.2.1 典型开源语言大模型 …44

  • 4.2.2 典型开源多模态大模型 …53

  • 4.3 典型开源框架与工具 …57

  • 4.4 大模型的训练数据 …60

  • 4.4.1 大模型的训练数据处理流程和特点 …60

  • 4.4.2 大模型常用的公开数据集 …63

第 5 章 大模型的开发训练与推理部署 …66
  • 5.1 大模型开发与训练 …66

  • 5.2 大模型推理部署 …68

  • 5.2.1 大模型压缩 …69

  • 5.2.2 大模型推理与服务部署 …70

  • 5.3 软硬件适配与协同优化 …71

  • 5.3.1 大模型的软硬件适配 …72

  • 5.3.2 大模型的软硬件协同优化 …72

第 6 章 大模型应用 …74
  • 6.1 信息检索 …74

  • 6.2 新闻媒体 …75

  • 6.3 智慧城市 …76

  • 6.4 生物科技 …76

  • 6.5 智慧办公 …77

  • 6.6 影视制作 …78

  • 6.7 智能教育 …78

  • 6.8 智慧金融 …79

  • 6.9 智慧医疗 …79

  • 6.10 智慧工厂 …79

  • 6.11 生活服务…80

  • 6.12 智能机器人 …80

  • 6.13 其他应用 …80

第 7 章 大模型的安全性 …82
  • 7.1 大模型安全风险引发全球广泛关注 …82

  • 7.2 大模型安全治理的政策法规和标准规范 …83

  • 7.3 大模型安全风险的具体表现 …85

  • 7.3.1 大模型自身的安全风险 …85

  • 7.3.2 大模型在应用中衍生的安全风险 …86

  • 7.4 大模型安全研究关键技术 …88

  • 7.4.1 大模型的安全对齐技术 …88

  • 7.4.2 大模型安全性评测技术 …91

第 8 章 总结与思考 …94
  • 8.1 协同多方合作,共同推动大模型发展 …95

  • 8.2 建立大模型合规标准和评测平台 …96

  • 8.3 应对大模型带来的安全性挑战 …97

  • 8.4 开展大模型广泛适配,推动大模型技术栈自主可控…98

大模型发展历程

自2006年Geoffrey Hinton提出通过逐层无监督预训练攻克深层网络训练难题以来,深度学习在众多领域均取得了显著的突破,其发展历程从最初的标注数据监督学习,逐渐演进到预训练模型,最终迈向大模型的新纪元。

2022年底,OpenAI 发布的ChatGPT凭借其卓越的性能引发了广泛的关注,充分展现了大模型在处理多场景、多用途、跨学科任务时的强大能力。因此,大模型被普遍认为是未来人工智能领域不可或缺的关键基础设施。

image.png
总结

大模型技术,以其广阔的应用前景和巨大潜力,无疑成为了技术发展的焦点。然而,随之而来的挑战亦不容忽视:可靠性、可解释性的难题需要我们去攻克,数据质量与数量的提升成为迫切需求,应用部署成本的降低与迁移能力的增强同样重要,而安全与隐私保护的强化更是关键中的关键。此外,探索更为贴合实际、具备落地价值的应用场景,亦是我们需要努力的方向。 这些挑战与机遇并存,将决定大模型技术未来的广泛应用与发展命运。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值