近期,中国人工智能学会发布了《中国人工智能大模型技术白皮书》,系统梳理了大模型技术演进,深入探讨关键技术要素,并剖析当前挑战及未来展望。 我为大家做了简要总结。
目录
第 1 章 大模型技术概述 …5
-
1.1 大模型技术的发展历程 …5
-
1.2 大模型技术的生态发展 …9
-
1.3 大模型技术的风险与挑战 …11
第 2 章 语言大模型技术 …13
-
2.1 Transformer 架构…13
-
2.2 语言大模型架构 …17
-
2.2.1 掩码语言建模 …17
-
2.2.2 自回归语言建模 …18
-
2.2.3 序列到序列建模 …18
-
2.3 语言大模型关键技术 …19
-
2.3.1 语言大模型的预训练 …19
-
2.3.2 语言大模型的适配微调 …21
-
2.3.3 语言大模型的提示学习 …24
-
2.3.4 语言大模型的知识增强 …26
-
2.4.5 语言大模型的工具学习 …27
第 3 章 多模态大模型技术 …29
-
3.1 多模态大模型的技术体系 …29
-
3.1.1 面向理解任务的多模态大模型… 29
-
3.1.2 面向生成任务的多模态大模型 …31
-
3.1.3 兼顾理解和生成任务的多模态大模型…33
-
3.1.4 知识增强的多模态大模型 …35
-
3.2 多模态大模型的关键技术 …36
-
3.2.1 多模态大模型的网络结构设计 …363
-
3.2.2 多模态大模型的自监督学习优化 …37
-
3.2.3 多模态大模型的下游任务微调适配 …39
第 4 章 大模型技术生态 …41
-
4.1 典型大模型平台 …41
-
4.2 典型开源大模型 …44
-
4.2.1 典型开源语言大模型 …44
-
4.2.2 典型开源多模态大模型 …53
-
4.3 典型开源框架与工具 …57
-
4.4 大模型的训练数据 …60
-
4.4.1 大模型的训练数据处理流程和特点 …60
-
4.4.2 大模型常用的公开数据集 …63
第 5 章 大模型的开发训练与推理部署 …66
-
5.1 大模型开发与训练 …66
-
5.2 大模型推理部署 …68
-
5.2.1 大模型压缩 …69
-
5.2.2 大模型推理与服务部署 …70
-
5.3 软硬件适配与协同优化 …71
-
5.3.1 大模型的软硬件适配 …72
-
5.3.2 大模型的软硬件协同优化 …72
第 6 章 大模型应用 …74
-
6.1 信息检索 …74
-
6.2 新闻媒体 …75
-
6.3 智慧城市 …76
-
6.4 生物科技 …76
-
6.5 智慧办公 …77
-
6.6 影视制作 …78
-
6.7 智能教育 …78
-
6.8 智慧金融 …79
-
6.9 智慧医疗 …79
-
6.10 智慧工厂 …79
-
6.11 生活服务…80
-
6.12 智能机器人 …80
-
6.13 其他应用 …80
第 7 章 大模型的安全性 …82
-
7.1 大模型安全风险引发全球广泛关注 …82
-
7.2 大模型安全治理的政策法规和标准规范 …83
-
7.3 大模型安全风险的具体表现 …85
-
7.3.1 大模型自身的安全风险 …85
-
7.3.2 大模型在应用中衍生的安全风险 …86
-
7.4 大模型安全研究关键技术 …88
-
7.4.1 大模型的安全对齐技术 …88
-
7.4.2 大模型安全性评测技术 …91
第 8 章 总结与思考 …94
-
8.1 协同多方合作,共同推动大模型发展 …95
-
8.2 建立大模型合规标准和评测平台 …96
-
8.3 应对大模型带来的安全性挑战 …97
-
8.4 开展大模型广泛适配,推动大模型技术栈自主可控…98
大模型发展历程
自2006年Geoffrey Hinton提出通过逐层无监督预训练攻克深层网络训练难题以来,深度学习在众多领域均取得了显著的突破,其发展历程从最初的标注数据监督学习,逐渐演进到预训练模型,最终迈向大模型的新纪元。
2022年底,OpenAI 发布的ChatGPT凭借其卓越的性能引发了广泛的关注,充分展现了大模型在处理多场景、多用途、跨学科任务时的强大能力。因此,大模型被普遍认为是未来人工智能领域不可或缺的关键基础设施。
总结
大模型技术,以其广阔的应用前景和巨大潜力,无疑成为了技术发展的焦点。然而,随之而来的挑战亦不容忽视:可靠性、可解释性的难题需要我们去攻克,数据质量与数量的提升成为迫切需求,应用部署成本的降低与迁移能力的增强同样重要,而安全与隐私保护的强化更是关键中的关键。此外,探索更为贴合实际、具备落地价值的应用场景,亦是我们需要努力的方向。 这些挑战与机遇并存,将决定大模型技术未来的广泛应用与发展命运。