Dify安装与使用指南:详细步骤教程

Dify是一个开源的LLM应用开发平台,今天咱们详细介绍下Dify的安装步骤和使用场景。

Dify下载地址

Dify的官方GitHub仓库提供了源代码的下载,您可以通过以下链接访问并下载Dify:

Dify GitHub仓库

安装依赖

Docker环境配置

在安装Dify之前,您需要确保您的计算机上安装了Docker环境。以下是配置Docker镜像源的步骤,以提高拉取镜像的速度:

  1. 打开Docker Desktop,进入Settings中的Docker Engine。
  2. 在右方的json结构中,加入以下镜像源列表:
"registry-mirrors": [
    "https://registry.docker-cn.com",
    "https://docker.mirrors.ustc.edu.cn",
    "http://hub-mirror.c.163.com",
    "https://cr.console.aliyun.com/"
]

点击“Apply & restart”保存设置并重启Docker服务。

安装Python依赖

Dify使用Python语言开发,因此您需要安装Python环境以及相关的依赖包。以下是安装依赖的步骤:

  1. 安装Python 3.12环境(推荐使用pyenv进行版本管理)。
  2. 使用Poetry管理Python依赖。首先,您需要安装Poetry:
curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
  1. 通过Poetry安装Dify的依赖。在Dify项目的根目录下执行以下命令:
poetry env use 3.12
poetry shell
poetry install

如果在执行poetry install时遇到依赖下载缓慢的问题,可以尝试禁用keyring:

export PYTHON_KEYRING_BACKEND=keyring.backends.null.Keyring

后端API部署

  1. 从GitHub克隆Dify源代码到本地:
git clone https://github.com/langgenius/dify.git
  1. 启动DockerCompose堆栈,后端需要一些中间件,包括PostgreSQL、Redis和Weaviate,可以使用以下命令一起启动:
cd ../docker
cp middleware.env.example middleware.env
docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
  1. 配置API环境:
cd ../api
cp .env.example .env
sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
  1. 运行数据库迁移,以确保数据库是最新的:
poetry run python -m flask db upgrade

前端页面部署

  1. 安装Node.js v18.x LTS和NPM版本8.x.x或Yarn。
  2. 配置环境变量。在当前目录下创建文件.env.local,并复制.env.example中的内容。根据需求修改这些环境变量的值:
# For production release, change this to PRODUCTION
NEXT_PUBLIC_DEPLOY_ENV=DEVELOPMENT
# The deployment edition, SELF_HOSTED
NEXT_PUBLIC_EDITION=SELF_HOSTED
# The base URL of console application, refers to the Console base URL of WEB service if console domain is different from api or web app domain.
NEXT_PUBLIC_API_PREFIX=http://localhost:5001/console/api
# The URL for Web APP, refers to the Web App base URL of WEB service if web app domain is different from console or api domain.
NEXT_PUBLIC_PUBLIC_API_PREFIX=http://localhost:5001/api
  1. 启动Web服务:
npm run start
# or
yarn start
# or
pnpm start

正常启动后,访问http://127.0.0.1:3000即可使用本地部署的Dify。

Dify提供了一个强大的平台,让您能够快速构建和部署生成式AI应用。希望这篇指南能帮助您更好地了解和使用Dify。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

<think>好的,用户想下载和安装Dify相关的资源或工具。首先,我需要回忆一下之前提供的引用内容,看看有哪些可用的信息。 根据引用[1],Dify可以通过Github和Gitcode下载,用户需要注意国内用户可能更适合Gitcode加速。引用[2]和[3]提到了Docker容器的安装方法,特别是Windows用户可以通过Docker来安装。另外,引用[4]看起来像是广告或无关信息,可能需要忽略。 用户的问题集中在下载和安装步骤上,所以需要分步骤说明。首先应该介绍两种主要方法:源码下载和Docker安装。源码部分需要指导用户从Github或Gitcode克隆仓库,并启动应用。Docker部分则需要确保用户已经安装了Docker,然后拉取镜像并运行容器。此外,可能还需要提到系统要求和依赖,比如Python环境或Docker的配置。 需要检查是否有遗漏的步骤,例如是否需要安装依赖包,或者配置环境变量等。同时,要确保给出的命令准确,比如docker run的参数是否正确。还要提醒用户注意权限问题,特别是在运行Docker命令时可能需要管理员权限。 用户可能的疑问包括安装后的访问方式,比如通过localhost:80访问,以及如何确认安装成功。可能还需要简单介绍Dify的功能,帮助用户了解安装后的使用方向。此外,国内用户可能遇到下载速度慢的问题,所以强调Gitcode作为替代源很重要。 最后,生成相关问题时要围绕下载安装的后续步骤、配置、系统要求和本地开发调试方法,这些能帮助用户进一步解决问题。</think>根据现有资料,Dify 的下载和安装主要通过两种方式实现,以下是具体操作步骤: ### 一、源码下载安装(推荐开发者) 1. **国内用户加速下载** 通过 Gitcode 镜像站克隆仓库(速度更快): ```bash git clone https://gitcode.com/langgenius/dify.git ``` 或通过 GitHub 官方源: ```bash git clone https://github.com/langgenius/dify.git ``` 2. **启动应用** 需预先安装 Python 3.8+ 和 Node.js 16+: ```bash cd dify/docker docker-compose up -d ``` ### 二、Docker 容器安装(推荐普通用户) 1. **拉取镜像** Windows/Mac/Linux 系统已安装 Docker 后执行: ```bash docker pull langgenius/dify:latest ``` 2. **运行容器** 通过单条命令启动完整服务: ```bash docker run -d --name dify -p 80:80 -v dify_data:/data langgenius/dify:latest ``` *该命令将数据持久化存储在 `dify_data` 卷中[^2][^3]* ### 三、访问服务 安装完成后浏览器访问 `http://localhost:80` 即可使用。系统默认内置 PostgreSQL 和 Redis 服务,无需额外配置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值