大模型好书推荐《大模型应用开发极简入门》(附PDF)

大模型应用开发的革命性指南

在人工智能技术飞速迭代的今天,大语言模型(LLM)已成为推动技术落地的核心引擎。然而,如何从零开始掌握大模型应用开发的核心逻辑?如何将GPT-4ChatGPT等前沿技术转化为实际生产力?《大模型应用开发极简入门:基于GPT-4ChatGPT(第2版)》一书为开发者提供了系统化的答案。作为热销2万册的经典升级版,本书不仅是初学者的“最小可用知识”手册,更是进阶者构建复杂AI应用的实战指南。

图片

一、从理论到实战的极简路径

本书由国际支付公司 Worldline的机器学习专家奥利维耶·卡埃朗与软件架构师玛丽-艾丽斯·布莱特合著,并由大模型创业公司Dify产品经理何文斯翻译,兼具学术严谨性与工业落地视角。全书以**150页(第1版)至300页(第2版)**的精炼篇幅,围绕GPT-4和ChatGPT展开,覆盖大模型开发的全生命周期,包括基础原理、API调用、提示工程、微调、检索增强生成(RAG)、智能体(Agent)等核心技术。

目标读者

  • 希望将LLM能力嵌入现有系统的Python开发者

  • 试图用AI改造内容生成、客服、数据分析等场景的创业者

  • 渴望从“调参工程师”进阶为“AI应用架构师”的技术人员

二、三大范式与六大技术模块

1. 技术范式

书中提炼了大模型开发的三大核心范式

  • 提示工程:通过设计上下文、角色与任务,优化模型输出质量;

  • 微调(Fine-tuning):针对特定任务调整预训练模型,提升垂直领域性能;

  • RAG(检索增强生成):结合外部知识库增强模型的事实性与专业性。

2. 技术模块
  • 基础架构:详解GPT模型演进史、Transformer架构原理及AI幻觉的应对策略;

  • API开发:从OpenAI接口调用到多轮对话管理,涵盖定价、安全与隐私考量;

  • 高阶工具链LangChain框架实现动态提示与智能体、LlamaIndex优化检索、Dify平台快速部署应用;

  • 实战案例:新闻稿生成器、YouTube视频摘要、游戏专家系统等6大场景,代码开源且可直接复用。

三、紧跟技术趋势的全面升级

1. 第2版新增内容
  • 技术扩展:新增RAG、智能体工作流设计及DeepSeek模型开发案例,覆盖LLM生态主流平台(OpenAILangChainDeepSeekDify);

  • 深度解析:剖析GPT-4的架构更新与API交互优化,如函数调用(Function Calling)与多模态扩展;

  • 工业级实践:结合延迟优化与性能瓶颈分析,确保案例可落地。

2. 学习友好性
  • 图解与代码:通过流程图解与Python示例降低学习门槛,配套GitHub代码库支持快速复现;

  • 术语表与速查清单:方便开发者随时查阅关键概念与API参数;

  • 中文本地化:独家新增DeepSeek案例,弥补英文版技术生态覆盖的局限。

五、技术浪潮中的认知杠杆

本书不仅提供代码片段,更构建了一套“认知-工具-实践”体系,帮助开发者在技术快速迭代中保持竞争力。正如译者何文斯所言:“真正的护城河不是掌握某个模型,而是理解底层架构与开发范式。” 无论你是编程新手还是资深工程师,本书都能助你跨越“从理论到落地”的鸿沟,开启LLM应用开发的新篇章。

   如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值