大模型应用开发的革命性指南
在人工智能技术飞速迭代的今天,大语言模型(LLM
)已成为推动技术落地的核心引擎。然而,如何从零开始掌握大模型应用开发的核心逻辑?如何将GPT-4
、ChatGPT
等前沿技术转化为实际生产力?《大模型应用开发极简入门:基于GPT-4
和ChatGPT
(第2版)》一书为开发者提供了系统化的答案。作为热销2万册的经典升级版,本书不仅是初学者的“最小可用知识”手册,更是进阶者构建复杂AI应用的实战指南。
一、从理论到实战的极简路径
本书由国际支付公司 Worldline
的机器学习专家奥利维耶·卡埃朗与软件架构师玛丽-艾丽斯·布莱特合著,并由大模型创业公司Dify
产品经理何文斯翻译,兼具学术严谨性与工业落地视角。全书以**150页(第1版)至300页(第2版)**的精炼篇幅,围绕GPT-4和ChatGPT展开,覆盖大模型开发的全生命周期,包括基础原理、API调用、提示工程、微调、检索增强生成(RAG)、智能体(Agent)等核心技术。
目标读者:
-
希望将
LLM
能力嵌入现有系统的Python
开发者 -
试图用
AI
改造内容生成、客服、数据分析等场景的创业者 -
渴望从“调参工程师”进阶为“
AI
应用架构师”的技术人员
二、三大范式与六大技术模块
1. 技术范式
书中提炼了大模型开发的三大核心范式:
-
提示工程:通过设计上下文、角色与任务,优化模型输出质量;
-
微调(Fine-tuning):针对特定任务调整预训练模型,提升垂直领域性能;
-
RAG
(检索增强生成):结合外部知识库增强模型的事实性与专业性。
2. 技术模块
-
基础架构:详解
GPT
模型演进史、Transformer
架构原理及AI
幻觉的应对策略; -
API开发:从
OpenAI
接口调用到多轮对话管理,涵盖定价、安全与隐私考量; -
高阶工具链:
LangChain
框架实现动态提示与智能体、LlamaIndex
优化检索、Dify
平台快速部署应用; -
实战案例:新闻稿生成器、
YouTube
视频摘要、游戏专家系统等6大场景,代码开源且可直接复用。
三、紧跟技术趋势的全面升级
1. 第2版新增内容
-
技术扩展:新增
RAG
、智能体工作流设计及DeepSeek
模型开发案例,覆盖LLM生态主流平台(OpenAI
、LangChain
、DeepSeek
、Dify
); -
深度解析:剖析
GPT-4
的架构更新与API
交互优化,如函数调用(Function Calling
)与多模态扩展; -
工业级实践:结合延迟优化与性能瓶颈分析,确保案例可落地。
2. 学习友好性
-
图解与代码:通过流程图解与
Python
示例降低学习门槛,配套GitHub
代码库支持快速复现; -
术语表与速查清单:方便开发者随时查阅关键概念与
API
参数; -
中文本地化:独家新增
DeepSeek
案例,弥补英文版技术生态覆盖的局限。
五、技术浪潮中的认知杠杆
本书不仅提供代码片段,更构建了一套“认知-工具-实践”体系,帮助开发者在技术快速迭代中保持竞争力。正如译者何文斯所言:“真正的护城河不是掌握某个模型,而是理解底层架构与开发范式。” 无论你是编程新手还是资深工程师,本书都能助你跨越“从理论到落地”的鸿沟,开启LLM
应用开发的新篇章。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓