在这个信息爆炸的时代,人工智能和机器学习已经从科幻小说走向了现实。大模型,作为这个领域的重要分支,曾经似乎只是大型企业和研究机构的专利。然而,随着技术的进步,这些曾经遥不可及的工具现在也可以在个人电脑上运行。本文将带你一步步了解如何在个人电脑上运行大模型,让你的机器学习之旅更加便捷和高效。
本地部署虽然有着诸多优势,但不少人对它望而却步,觉得其难度颇高。不可否认,本地部署确实存在一定的门槛。从硬件层面来看,运行大型模型需要强大的计算资源支持。以往还需要对相关技术有一点的了解,本地部署涉及到多个技术环节,需要具备一定的专业知识。首先是深度学习框架的选择和使用,目前常见的深度学习框架有 PyTorch、TensorFlow 等,它们各自有其特点和适用场景。
不过,随着技术的不断发展,如今市面上已经有一些适合小白用户的工具和方法,让本地部署变得不再那么遥不可及,也可以说是非常轻松简单。接下来就开始手把手部署一个大模型到本地。
01
—
前期准备
在开始本地部署模型之前,需要做好充分的前期准备工作,这是确保部署顺利进行的基础。
从硬件方面来说,电脑配置起着关键作用。总不能用十几年前的老爷机来玩吧。
CPU:正常来说,目前市面上在售的一般都可以;
内存:最好是8G以上,越大越好
硬盘:最好预留个100G,越大越好,毕竟各种模型资源还是挺大的
显卡:有显卡话,运行的效果会更好,速度更快,一般显存4G以上就可以玩的比较舒服了,如果没有显卡使用CPU跑的话一般也是可以跑模型的,只不过会比较慢。
02
—
工具选择和模型下载
目前市面上有很多好用又方便的工具可供选择,比如:ollama,LM Studio,GPT4All等等,这边简单的介绍一下这几个工具。
ollama:https://ollama.com/,目前最受欢迎的本地部署大模型的框架之一,没有图像界面操作,不过下载安装后只需几个命令就可以下载部署大模型。,模型下载可以直接到ollama的官网里直接搜索下载:https://ollama.com/search
LM Studio:https://lmstudio.ai/,有很方便的图形界面操作,模型下载安装使用都可以直接在这个软件里操作,对新手非常友好。
GPT4All:https://docs.gpt4all.io/gpt4all_desktop/quickstart.html,跟LM Studio差不多,也是有图形界面可以直接操作,也支持直接在软件里直接搜索下载安装部署模型。
关于模型下载,除了以上软件自带的渠道搜索下载外,还可以到Hugging Face里下载自己需要的模型,不过可能需要点魔法上网才行:https://huggingface.co/models ,不过可以使用国内的镜像网站代替,也可以直接下载大部分的模型:https://hf-mirror.com/
03
—
部署步骤详解
以下我就以Windows操作系统,使用ollama来做本地部署大模型的演示。首选进入官网地址:https://ollama.com/download 下载指定版本的ollama
下载后直接点install就搞定了
安装完成打开终端工具,直接在搜索栏里输入CMD然后回车,在终端输入ollama回车,看到这个信息就表明已经成功安装
ollama安装好后,接下来就开始下载模型并部署,使用ollama部署模型很简单,一个命令就搞定,这边就以最近特别火的DeepSeek这个开源模型来演示一下:
进入这个网站:https://ollama.com/search 并搜索deepseek,点击搜索到的模型,然后再选择需要模型的版本,不同参数对硬件有一定要求,一般个人电脑可以选择7b的模型,也就是70亿参数的模型
复制这个命令:ollama run deepseek-r1:7b 到之前打开的那个终端,回车等安装好就完成了
看到这个界面就表示已经安装完成了
直接输入你的问题就可以直接使用了
到此,本地部署大模型的演示操作就基本完成了,是不是非常简单,大家可以根据自己的需求,下载不同的模型到本地部署。
不过使用ollama是没有界面的,对话操作就不是很方便,有没有相应的图形界面的工具呢,答案肯定是有的,这边推荐一个我经常使用的软件:Chatbox
这边也简单介绍一下如何结合chatbox来使用本地部署的模型
首先在这个网站上下载安装:https://chatboxai.app/zh#download
安装好后,打开软件,按照以下的步骤设置,其中api服务默认是:http://127.0.0.1:11434
填好信息后,点击保存。就可以在窗口里使用刚刚部署的大模型了
是不是很简单。大家赶紧动动手,自己部署一个属于自己的本地大模型
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓