AI大模型不吃配置本地部署:手把手教你如何在个人电脑上运行(附教程)

在这个信息爆炸的时代,人工智能和机器学习已经从科幻小说走向了现实。大模型,作为这个领域的重要分支,曾经似乎只是大型企业和研究机构的专利。然而,随着技术的进步,这些曾经遥不可及的工具现在也可以在个人电脑上运行。本文将带你一步步了解如何在个人电脑上运行大模型,让你的机器学习之旅更加便捷和高效。

本地部署虽然有着诸多优势,但不少人对它望而却步,觉得其难度颇高。不可否认,本地部署确实存在一定的门槛。从硬件层面来看,运行大型模型需要强大的计算资源支持。以往还需要对相关技术有一点的了解,本地部署涉及到多个技术环节,需要具备一定的专业知识。首先是深度学习框架的选择和使用,目前常见的深度学习框架有 PyTorch、TensorFlow 等,它们各自有其特点和适用场景。

不过,随着技术的不断发展,如今市面上已经有一些适合小白用户的工具和方法,让本地部署变得不再那么遥不可及,也可以说是非常轻松简单。接下来就开始手把手部署一个大模型到本地。

01

前期准备

在开始本地部署模型之前,需要做好充分的前期准备工作,这是确保部署顺利进行的基础。

从硬件方面来说,电脑配置起着关键作用。总不能用十几年前的老爷机来玩吧。

CPU:正常来说,目前市面上在售的一般都可以;

内存:最好是8G以上,越大越好

硬盘:最好预留个100G,越大越好,毕竟各种模型资源还是挺大的

显卡:有显卡话,运行的效果会更好,速度更快,一般显存4G以上就可以玩的比较舒服了,如果没有显卡使用CPU跑的话一般也是可以跑模型的,只不过会比较慢。

02

工具选择和模型下载

目前市面上有很多好用又方便的工具可供选择,比如:ollama,LM Studio,GPT4All等等,这边简单的介绍一下这几个工具。

ollama:https://ollama.com/,目前最受欢迎的本地部署大模型的框架之一,没有图像界面操作,不过下载安装后只需几个命令就可以下载部署大模型。,模型下载可以直接到ollama的官网里直接搜索下载:https://ollama.com/search

LM Studio:https://lmstudio.ai/,有很方便的图形界面操作,模型下载安装使用都可以直接在这个软件里操作,对新手非常友好。

GPT4All:https://docs.gpt4all.io/gpt4all_desktop/quickstart.html,跟LM Studio差不多,也是有图形界面可以直接操作,也支持直接在软件里直接搜索下载安装部署模型。

关于模型下载,除了以上软件自带的渠道搜索下载外,还可以到Hugging Face里下载自己需要的模型,不过可能需要点魔法上网才行:https://huggingface.co/models ,不过可以使用国内的镜像网站代替,也可以直接下载大部分的模型:https://hf-mirror.com/

03

部署步骤详解

以下我就以Windows操作系统,使用ollama来做本地部署大模型的演示。首选进入官网地址:https://ollama.com/download 下载指定版本的ollama

下载后直接点install就搞定了

安装完成打开终端工具,直接在搜索栏里输入CMD然后回车,在终端输入ollama回车,看到这个信息就表明已经成功安装

ollama安装好后,接下来就开始下载模型并部署,使用ollama部署模型很简单,一个命令就搞定,这边就以最近特别火的DeepSeek这个开源模型来演示一下:

进入这个网站:https://ollama.com/search 并搜索deepseek,点击搜索到的模型,然后再选择需要模型的版本,不同参数对硬件有一定要求,一般个人电脑可以选择7b的模型,也就是70亿参数的模型

复制这个命令:ollama run deepseek-r1:7b 到之前打开的那个终端,回车等安装好就完成了

看到这个界面就表示已经安装完成了

直接输入你的问题就可以直接使用了

到此,本地部署大模型的演示操作就基本完成了,是不是非常简单,大家可以根据自己的需求,下载不同的模型到本地部署。

不过使用ollama是没有界面的,对话操作就不是很方便,有没有相应的图形界面的工具呢,答案肯定是有的,这边推荐一个我经常使用的软件:Chatbox

这边也简单介绍一下如何结合chatbox来使用本地部署的模型

首先在这个网站上下载安装:https://chatboxai.app/zh#download

安装好后,打开软件,按照以下的步骤设置,其中api服务默认是:http://127.0.0.1:11434

填好信息后,点击保存。就可以在窗口里使用刚刚部署的大模型了

是不是很简单。大家赶紧动动手,自己部署一个属于自己的本地大模型

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值