最近 AI 可太火啦,大语言模型一个接一个地冒出来,像 DeepSeek 这些,功能强大得让人惊叹。可咱普通人想自己捣鼓一个大模型,那难度就像登天一样。那些大模型参数动不动就几百亿,训练起来不仅要超厉害的硬件设备,还得有专业团队才行,成本高得吓人。
今天小林君就给大家分享一个超酷的开源项目 - MiniMind
,它能让咱们普通人也能轻松训练自己的大模型!
项目简介
MiniMind
是一个开源项目,它允许你从零开始,用极低的成本和时间训练出一个超迷你的语言模型。这个项目不仅提供了完整的训练流程代码,还涵盖了从数据清洗到模型训练的每一个环节,简直就是一本活生生的AI教科书!而且,MiniMind的最小版本只有25.8MB,比GPT-3小了7000倍,手机都能跑,厉害吧!
目前在Github上收获了10.7K star!
性能特色
你真的还以为训练AI需要猛堆天价算力、各种团队?MiniMind告诉你完全不一样的路径:
-
超低成本:租用一张NVIDIA 3090显卡,训练总成本不到3块钱,比一杯奶茶还便宜!
-
超短时间:从数据清洗到模型训练,全流程自动化,普通人2小时就能搞定,效率杠杠的!
-
超小体积:最小模型仅25.8MB,手机都能流畅运行,方便携带,随时随地都能秀一把AI技能!
-
全流程开源:从预训练到微调,再到LoRA、DPO等前沿技术,所有代码都是从零开始用PyTorch原生框架重构的,没有任何第三方依赖,小白也能轻松上手!
-
前沿技术加持:支持混合专家(MoE)、直接偏好优化(DPO)等前沿技术,让模型更智能、更贴心!
-
多模态扩展:不仅限于文本处理,还支持图像理解等多模态任务,功能更全面!
快速安装使用
作者测试的硬件配置如下:
CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
RAM: 128 GB
GPU: NVIDIA GeForce RTX 3090(24GB) * 8
Ubuntu==20.04
CUDA==12.2
Python==3.10.16
requirements.txt
安装使用过程也不难。我们得把项目代码克隆到自己电脑上,打开命令行,输入下面的代码:
git clone https://github.com/jingyaogong/minimind.git
接着安装项目需要的各种依赖,在命令行里输入:
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
安装好之后,要是你想测试已有模型的效果,可以从Hugging Face上把模型下载下来,命令是:
git clone https://huggingface.co/jingyaogong/MiniMind2
下载好模型,就可以在命令行里测试问答效果啦,输入:
python eval_model.py --load 1 --model_mode 2
要是你更喜欢用图形界面,那就安装个Streamlit,然后输入下面的命令启动Web UI:
pip install streamlit
cd scripts
streamlit run web_demo.py
要是你想自己训练一个模型,在安装好依赖后,还得下载数据集,把数据集放到./dataset/
目录下。然后就可以开始训练啦,先进行预训练,让模型学习基础知识,在命令行输入:
python train_pretrain.py
预训练完成后,再进行监督微调,让模型学会怎么跟人对话,输入:
python train_full_sft.py
训练好之后,就能测试模型效果了,把训练好的模型文件放在./out/
目录下,然后在命令行输入:
python eval_model.py --model_mode 1
项目体验展示
MiniMind
真的是一个非常棒的开源项目。它不仅降低了AI开发的门槛,还提供了全流程的开源代码,让每个人都能亲手训练自己的AI模型。无论是想入门AI的开发者,还是需要定制化AI助手的企业,或者是对语言模型感兴趣的研究者,MiniMind都是一个值得尝试的项目。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓