引言
大家好!👋 在人工智能浪潮之巅,大语言模型(LLM)无疑是最耀眼的明星 ✨。从 ChatGPT 的惊艳问世,到 LLaMA、Qwen、DeepSeek 等模型的持续迭代,它们强大的语言理解、生成和推理能力正在深刻改变着我们的世界。
你是否也曾惊叹于 LLM 的智慧,渴望系统性地揭开这层神秘面纱?🤔 是否在海量的信息中感到迷茫,希望能有一本权威指南,带你从基石到前沿,贯通理论与实战?
现在,它来了!由 复旦大学张奇教授、桂韬副教授、郑锐老师和黄萱菁教授 倾力打造的权威著作 《大语言模型:从理论到实践》第二版(预览版) 正式发布!这本书是国内 LLM 领域的集大成之作,旨在为所有对 LLM 感兴趣的读者提供一座坚实的桥梁,连接理论的深度与实践的广度。
为什么这本书值得你拥有?
在这个信息爆炸的时代,关于 LLM 的知识点散落在各个角落,系统性学习资料匮乏,理论与实践之间往往存在鸿沟。这本书恰恰解决了这些痛点!
-
系统性与全面性: 它不再是零散的知识点堆砌,而是 系统性地梳理了 LLM 的全貌。从核心概念、发展历程 [Ch1],到 Transformer 基础 [Ch2],再到数据 [Ch3]、训练 [Ch4]、微调 [Ch5]、强化学习 [Ch6],直至多模态 [Ch7]、智能体 [Ch8]、RAG [Ch9]、效率优化 [Ch10]、评估 [Ch11] 和应用开发 [Ch12],覆盖了 LLM 的完整生命周期。
-
理论与实践并重: 本书完美诠释了“从理论到实践”的理念。不仅深入浅出地讲解了 Transformer 架构、注意力机制、LLaMA 结构、混合专家模型(MoE)等核心理论 [Ch2],更难能可贵的是,它提供了 丰富的实战代码案例和实践指导。想动手实践分布式训练?有 DeepSpeed [Ch4]!想玩转指令微调和 RLHF?有 DeepSpeed-Chat [Ch5] 和 verl [Ch6]!想探索多模态和智能体?有 MiniGPT-4 [Ch7] 和 LangChain [Ch8]!想优化推理?有 vLLM [Ch10]!助你真正“干起来”!
-
紧跟前沿,内容权威: 作为第二版,本书紧跟 LLM 的飞速发展,融入了最新的技术进展和研究成果,如 RoPE [Ch2]、FlashAttention [Ch2]、LoRA [Ch5]、长上下文扩展 [Ch5]、先进 RAG 架构 [Ch9]、FP8 低精度训练 [Ch10] 等热点技术。由复旦大学自然语言处理领域资深专家团队撰写,确保了内容的 前沿性、准确性和权威性。
这本书适合谁读?
无论你是哪个阶段的 AI 探索者,这本书都能为你带来巨大价值:
-
🎓 AI/NLP/CS 相关专业的学生、研究人员: 系统学习 LLM 知识体系,深入理解前沿技术,为科研和学习打下坚实基础。
-
💻 机器学习/算法工程师、开发者: 掌握 LLM 的核心技术与实践方法,提升工程能力,开发出更强大的 AI 应用。
-
🌐 对 LLM 技术充满好奇、渴望深入了解的技术爱好者: 一本权威指南,带你拨开迷雾,看懂 AI 时代的“黑魔法”。
章节速览:硬核干货抢先看!
-
第 2 章 - 大语言模型基础: 彻底搞懂 Transformer、GPT、LLaMA、混合专家模型(MoE)等基石架构。
-
第 3/4 章 - 预训练数据与分布式训练: 揭秘海量数据处理流程,掌握数据并行、模型并行、流水线并行等大规模训练核心技术,实战 DeepSpeed。
-
第 5/6 章 - 指令微调与强化学习: 学习如何让 LLM“听懂话”,掌握 SFT、RLHF、LoRA、PPO 等关键技术,实战 DeepSpeed-Chat 和 verl。
-
第 7/8/9 章 - 大模型增强: 探索多模态、智能体、RAG 等前沿方向,实战 MiniGPT-4 和 LangChain,让 LLM 能力再升级。
-
第 10/11/12 章 - 大模型应用: 聚焦效率优化(量化、稀疏化、高效推理、vLLM)、模型评估和应用开发,打通 LLM 落地最后一公里。
## 目录 ### 1 结论 1.1 大语言模型的基本概念 1.2 大语言模型的发展历程 1.3 大语言模型的构建流程 1.4 本书的内容安排 ### 2 大语言模型基础 2.1 Transformer 结构 2.1.1 嵌入表示法 2.1.2 注意力层 2.1.3 前馈层 2.1.4 残差连接与层归一化 2.1.5 基于解码器结构 2.2 生成式预测语言模型 GPT 2.2.1 自注意力机制 2.2.2 训练计算条件系统 2.2.3 预训练语言模型实现 2.3 大语言模型的结构 2.3.1 LLaMA 的模型结构 2.3.2 注意力机制优化 2.4 混合专家模型 2.4.1 模态集合专家模型 2.4.2 模型集合专家模型 2.4.3 软混合专家模型 ### 3 大语言模型预训练数据 3.1 数据来源 3.1.1 通用数据 3.1.2 专业数据 3.2 数据处理 3.2.1 数据过滤 3.2.2 冗余去除 3.2.3 隐私消除 3.2.4 词汇切分 3.3 数据影响分析 3.3.1 数据规模 3.3.2 数据质量 3.3.3 数据多样性 3.4 开源数据 3.4.1 Pile 3.4.2 ROOTS 3.4.3 RefinedWeb 3.4.4 CulturalX 3.4.5 SlimPajama ### 4 分布式训练 4.1 分布式训练概述 4.2 分布式训练的并行策略 4.2.1 数据并行 4.2.2 模型并行 4.2.3 混合并行 4.2.4 计算设备内存优化 4.3 分布式训练的集群架构 4.3.1 高性能计算集群的典型硬件组成 4.3.2 多线程多卡架构 4.3.3 主中心化架构 4.4 DeepSpeed 算法 4.4.1 基础概念 4.4.2 LLaMA 分布式训练实现 ### 5 指令微调 5.1 指令微调训练 5.1.1 指令微调数据 5.1.2 数据构建方法 5.1.3 指令微调数据评估与影响 5.1.4 指令微调训练策略 5.1.5 开发指令数据集 5.2 高效模型微调 5.2.1 LaRA 5.2.2 LaRA 的变体 5.3 模型上下文窗口扩展 5.3.1 基于中间层的扩展建模 5.3.2 动态调整方法 5.4 DeepSpeed-Chat SFT 算法 5.4.1 代码结构 5.4.2 数据模块 5.4.3 自定义模型 5.4.4 模型训练 5.4.5 模型推理 ### 6 强化学习 6.1 强化学习概述 6.1.1 强化学习基础概念 6.1.2 强化学习与数学工具的运用 6.2 策略优化方法 6.2.1 策略梯度 6.2.2 REINFORCE 算法 6.2.3 广义优势估计 6.2.4 逆强化学习算法 6.2.5 RLOO 6.2.6 CRPO 6.3 推理模型的强化学习 6.3.1 DeepSets-RL 6.3.2 Kimi RL 1.5 6.4 基于人类反馈的强化学习 6.4.1 基于人类反馈的强化学习流程 6.4.2 策略模型 6.4.3 模型训练 6.4.4 开源数据 6.5 VERI 算法 ### 7 多模态大语言模型 7.1 多模态大语言模型基础 7.1.1 典型多模态大语言模型 7.1.2 多模态大语言模型架构 7.2 大语言模型与多模态融合架构 7.2.1 传统多模态模型架构 7.2.2 语音语言模型架构 7.2.3 多模态大语言模型架构 7.3 多模态大语言模型训练策略 7.3.1 数据处理 7.3.2 视觉语义对齐 7.3.3 多模态联合训练 7.4 MiniGPT-4 算法 7.4.1 MiniGPT-4 模型架构 7.4.2 MiniGPT-4 训练策略 ### 8 大模型智能体 8.1 智能体基础 8.1.1 智能体发展历史 8.1.2 大模型智能体定义 8.2 大语言模型智能体架构 8.2.1 感知模块 8.2.2 规划模块 8.2.3 记忆模块 8.2.4 工具使用模块 8.3 大模型智能体训练 8.3.1 工具学习 8.3.2 推理规划 8.3.3 实例记忆 8.4 大模型智能体实验 8.4.1 手工编写代码 8.4.2 LangChain 框架 8.4.3 智能体平台 Core 实现 ### 9 检索增强生成 9.1 检索增强生成基础 9.1.1 RAG 系统框架 9.1.2 RAG 任务分级 9.1.3 RAG 系统集成 9.2 模块化检索增强生成架构 9.2.1 索引模块 9.2.2 检索前优化 9.2.3 检索 9.2.4 检索后优化 9.2.5 生成 9.2.6 后处理 9.3 RAG 系统设计模式 9.3.1 线性模式 9.3.2 条件模式 9.3.3 分支模式 9.3.4 循环模式 9.4 RAG 系统训练与优化 9.4.1 文本嵌入模型优化 9.4.2 查询优化 9.4.3 检索模块优化 9.4.4 生成模型优化 9.4.5 检索与生成联合优化 9.5 RAG 系统评估 9.5.1 RAG 评估的挑战 9.5.2 评估目标 9.5.3 评估数据集 9.5.4 评估指标 9.6 RAG 实践 9.6.1 基础 RAG 系统 9.6.2 查询分解与检索结果综合 RAG 系统 ### 10 大语言模型效率优化 10.1 效率优化基础 10.2 模型优化 10.2.1 Transformer 结构优化 10.2.2 模型量化 10.2.3 模型蒸馏 10.2.4 知识蒸馏 10.3 低精度训练 10.3.1 FP16 训练 10.3.2 FP8 大模型训练 10.4 高效推理 10.4.1 算法级优化 10.4.2 系统级优化 10.5 vLLM 推理框架实验 ### 11 大语言模型评估 11.1 模型评估概述 11.2 大语言模型评估体系 11.2.1 知识能力评估 11.2.2 安全与伦理评估 11.2.3 逻辑推理评估 11.3 大语言模型评估方法 11.3.1 评估指标 11.3.2 评估方法论 11.4 大语言模型评估流程 11.4.1 基础模型评估 11.4.2 SFT 模型和 RL 模型评估 ### 12 大语言模型应用开发 12.1 大语言模型典型应用场景 12.1.1 内容生成与创作 12.1.2 对话系统与聊天机器人 12.1.3 翻译与多语言处理 12.1.4 信息抽取与知识推理 12.1.5 代码生成与编程辅助 12.1.6 智能搜索与推荐 12.1.7 教育与培训 12.1.8 企业管理和决策支持 12.1.9 法律与合规 12.2 大语言模型应用开发案例 12.2.1 浏览器智能插件 12.2.2 论文检索与研究助手 12.3 大语言模型本地部署实践 12.3.1 llama.cpp 12.3.2 Ollama 12.3.3 Open WebUI
结语
《大语言模型:从理论到实践》(第二版预览版)不仅是一本技术书籍,更是一张通往 LLM 世界核心的地图,一盏照亮前沿探索之路的明灯。它将理论的深度与实践的广度完美结合,为你理解、应用乃至创新大语言模型技术提供最坚实的支持。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓