spark core试题

本文介绍了Spark中的关键概念,包括RDD的特性如弹性、分区、只读和依赖,以及缓存和CheckPoint的作用。讨论了RDD之间的依赖类型,如窄依赖和宽依赖,并解释了缓存策略和Checkpoint用于优化性能。还提到了广播变量的使用场景和Spark任务提交流程。
摘要由CSDN通过智能技术生成

(第八题后续补上)

  1. spark任务程序,将任务提交集群运行。(参数指定)(10)

    spark-submit \
    
    --class org.apache.spark.examples.SparkPi \
    
    --master yarn \
    
    --deploy-mode client \
    
    ./examples/jars/spark-examples_2.11-2.1.1.jar \ 
    100
    
    
  2. 写出下列代码的打印结果。(5分)

    def joinRdd(sc:SparkContext) {
    
    	val name= Array((1,"spark"),(2,"flink"),(3,"hadoop")**,(4,”java”))**
    
    	val score= Array((1,100),(2,90),(3,80)**,(5,90))**
    
    	val namerdd=sc.parallelize(name);
    
    	val scorerdd=sc.parallelize(score);
    
    	val result = namerdd.join(scorerdd);
    
    	result.collect.foreach(println);
    
    }
    //答案:(spark,100),(flink,90),(hadoop,80)
    
  3. 写出触发shuffle的算子(至少五个)(5分)

    def distinct()
    
    ef reduceByKey
    
    def groupByKey
    
    def groupBy
    
    sortByKey
    
    def join
    
    
  4. RDD的概念和特性(10分)

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据抽象。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

官网解释:

1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangeP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值