什么是SPARK

Spark是一款支持批处理、流处理和机器学习的内存计算框架,可在Hadoop集群或独立环境中运行。主要角色包括Spark Driver、Spark Executor和Spark Cluster Manager。Spark Driver负责应用程序调度,Executor执行任务,Cluster Manager管理资源。通信方式使用RPC和REST API。关键概念包括Stage任务划分、Task调度、Shuffle流程、RDD、DataFrame和DataSet转换,以及缓存和检查点的区别。
摘要由CSDN通过智能技术生成

1. 什么是Spark

Spark是一款基于内存计算的开源分布式计算框架,支持批处理、流处理和机器学习等各种计算模式。
它可以在Hadoop集群中运行,也可以独立运行。

2. 主要角色

Spark Driver:负责Spark应用程序的调度和协调,管理各个Spark任务的执行。
Spark Executor:负责在集群中执行Spark任务,包括数据的加载、转换和持久化等操作。
Spark Cluster Manager:负责管理Spark集群的资源,如内存、CPU等。

3. 涉及到的角色及其功能

Spark Driver:负责Spark应用程序的调度和协调,管理各个Spark任务的执行。
它的主要功能包括:
1.读取Spark应用程序的代码,将其转换为Spark任务并进行调度。
2.分配任务给Spark Executor,并监控任务的执行情况。
3.与Spark Cluster Manager进行通信,获取集群资源的使用情况。

Spark Executor:负责在集群中执行Spark任务,包括数据的加载、转换和持久化等操作。
它的主要功能包括:
1.执行Spark任务,并将结果返回给Spark Driver。
2.加载和管理数据,包括数据的转换和持久化等操作。

Spark Cluster Manager:负责管理Spark集群的资源,如内存、CPU等。
它的主要功能包括:
1.分配集群资源给Spark应用程序,包括内存、CPU等。
2.监控集群资源的使用情况,以确保资源的合理分配。

4. 角色之间的最佳通讯方式

Spark Driver和Spark Executor之间的通信通过RPC协议实现,而Spark Driver和Spark Cluster Manager之间的通信则通过REST API实现。

5. 需要监控的指标

Spark应用程序的执行情况:监控Spark应用程序的启动和关闭时间、任务的执行时间和成功率等指标。
集群资源的使用情况:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据海中游泳的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值