pytorch torch.backends.cudnn设置作用

主要是为了优化运行效率的

cuDNN使用非确定性算法,并且可以使用torch.backends.cudnn.enabled = False来进行禁用

如果设置为torch.backends.cudnn.enabled =True,说明设置为使用使用非确定性算法

然后再设置:torch.backends.cudnn.benchmark = true

那么cuDNN使用的非确定性算法就会自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题

一般来讲,应该遵循以下准则:

  1. 如果网络的输入数据维度或类型上变化不大,设置  torch.backends.cudnn.benchmark = true  可以增加运行效率;
  2. 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。

所以我们经常看见在代码开始出两者同时设置:

torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
参考资源链接:[浅谈pytorch torch.backends.cudnn设置作用](https://wenku.csdn.net/doc/6401abe5cce7214c316e9e47?utm_source=wenku_answer2doc_content) 在深度学习的模型训练中,合理配置PyTorchtorch.backends.cudnn能够显著提升计算效率。首先,我们需要了解torch.backends.cudnn的功能和作用cuDNN(CUDA Deep Neural Network library)是专门为深度神经网络设计的GPU加速库,它使用了多种优化算法来提升运算速度,但这些算法是非确定性的。这意味着在不同的输入尺寸或类型下,cuDNN可能会选择不同的算法来实现最优性能,这可能会导致每次运行结果的一致性问题。 为了获得最佳性能,我们通常推荐在输入数据维度或类型变化不大时开启torch.backends.cudnn.benchmark。这个选项允许cuDNN自动寻找最适合当前硬件配置的算法,以优化运行速度。但需要注意,开启这一选项可能会导致每次运行模型时得到略有差异的结果,这对于需要精确重现结果的实验是不利的。 如果你希望获得更一致的运行结果,可以在模型训练前将torch.backends.cudnn.deterministic设置为True,这样cuDNN会使用确定性算法,以保证每次运行结果的一致性,代价是可能会牺牲一些性能。 下面是一个简单的示例代码,展示如何进行配置: ```python import torch import torch.backends.cudnn as cudnn # 设置为True,cuDNN将采用确定性算法,保证每次运行结果的一致性 cudnn.deterministic = True # 设置为True,cuDNN将自动寻找最合适的算法以优化性能 cudnn.benchmark = True # 开启或关闭cuDNN的加速功能 cudnn.enabled = True # 接下来是模型训练代码... ``` 通过上述配置,我们可以在保持结果一致的同时,尽可能地提升模型训练的速度。但是,务必在实际应用中测试不同的配置对性能的影响,因为硬件配置和具体任务的差异可能会导致不同的最优配置。 为了进一步深入学习关于PyTorchcuDNN配置的知识,你可以参考《浅谈pytorch torch.backends.cudnn设置作用》这篇资料。该资料详细解释了cuDNN的工作原理,torch.backends.cudnn的各个配置项及其作用,并通过实例展示了如何在实际项目中应用这些设置来优化深度学习模型的训练过程。深入理解这些内容,将有助于你更灵活地应用PyTorch进行高效模型训练。 参考资源链接:[浅谈pytorch torch.backends.cudnn设置作用](https://wenku.csdn.net/doc/6401abe5cce7214c316e9e47?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值