【codeforces 749B】 Parallelogram is Back

 

Long time ago Alex created an interesting problem about parallelogram. The input data for this problem contained four integer points on the Cartesian plane, that defined the set of vertices of some non-degenerate (positive area) parallelogram. Points not necessary were given in the order of clockwise or counterclockwise traversal.

Alex had very nice test for this problem, but is somehow happened that the last line of the input was lost and now he has only three out of four points of the original parallelogram. He remembers that test was so good that he asks you to restore it given only these three points.

Input

The input consists of three lines, each containing a pair of integer coordinates xiand yi ( - 1000 ≤ xi, yi ≤ 1000). It's guaranteed that these three points do not lie on the same line and no two of them coincide.

Output

First print integer k — the number of ways to add one new integer point such that the obtained set defines some parallelogram of positive area. There is no requirement for the points to be arranged in any special order (like traversal), they just define the set of vertices.

Then print k lines, each containing a pair of integer — possible coordinates of the fourth point.

Example

Input

0 0
1 0
0 1

Output

3
1 -1
-1 1
1 1

Note

If you need clarification of what parallelogram is, please check Wikipedia page:

https://en.wikipedia.org/wiki/Parallelogram

 

 

 

 

 

 

 

已知平行四边形的三个顶点求最后一个,根据数学公式求解

AC代码:

 

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;

int main()
{
    int a[3][2];
    while(cin>>a[0][0]>>a[0][1] &&
    cin>>a[1][0]>>a[1][1] &&
    cin>>a[2][0]>>a[2][1])
    {
        int k = 3;
        int b[3][2];
        b[0][0] = a[0][0] + a[1][0] - a[2][0];
        b[0][1] = a[0][1] + a[1][1] - a[2][1];

        b[1][0] = a[0][0] + a[2][0] - a[1][0];
        b[1][1] = a[0][1] + a[2][1] - a[1][1];

        b[2][0] = a[1][0] + a[2][0] - a[0][0];
        b[2][1] = a[1][1] + a[2][1] - a[0][1];

        cout<<k<<endl;
        for(int i = 0; i < 3; i++)
        {
            cout<<b[i][0]<<" "<<b[i][1]<<endl;
        }
    }

    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值