nefu暑假集训2 ST表 个人模板+例题汇总

前言:

  比较简单的一个算法了,原理相当于是用二进制优化的区间dp了,用于求一个区间的最大或最小值。其实这类问题一般用线段树就可以直接解决,但如果查询次数过多的话可能会超时,这时就是ST表出场的时候了,因为ST表是现预处理的,所以查询的操作时间复杂度为o(1)。

正文:

习题:

Problem:A :st表模版

#include<bits/stdc++.h>
using namespace std;
int dp[1000005][20];
int main(){
	int n,m,a;
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		scanf("%d",&a);
		dp[i][0]=a;
	}
	int l=(int)(log(n)/log(2));
	for(int j=1;j<=l;j++){//预处理,dp[i,j]相当于从第i个数到第i+2^j个数的最大值(必须先j后i,与区间dp类似)。
		for(int i=1;i<=n;i++){
			dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);//状态转移方程(二分的方式)
		}
	}
	int x,y,p;
	for(int i=1;i<=m;i++){
		scanf("%d%d",&x,&y);
		p=(int)(log(y-x+1)/log(2));//p是最大能满足的2的幂次区间。
		printf("%d\n",max(dp[x][p],dp[y-(1<<p)+1][p]));//需要分别从左右两侧查询来得到最优答案
	}
	return 0;
}
Problem:B   速算比赛-ST表:

#include<bits/stdc++.h>
using namespace std;
int dp[100005][40],d[100005][40];
int main(){
	int n,k,a;
	cin>>n>>k;
	for(int i=1;i<=n;i++){
		scanf("%d",&a);
		dp[i][0]=a;d[i][0]=a;
	}
	int l=(int)(log(n)/log(2));
	for(int j=1;j<=l;j++){
		for(int i=1;i<=n-(1<<j)+1;i++){
			dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
			d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
		}
	}
	int x,y,p;
	for(int i=1;i+k-1<=n;i++){
		x=i;y=i+k-1;
		p=(int)(log(y-x+1)/log(2));
		printf("%d %d\n",max(dp[x][p],dp[y-(1<<p)+1][p]),min(d[x][p],d[y-(1<<p)+1][p]));
	}
	return 0;
}

和第一题类似,只不过还要求最小值,再开一个数组并计算即可。

Problem:C  奶牛排队-ST

第二题的求差版本。

Problem:D  选择客栈-st

#include<bits/stdc++.h>
using namespace std;
int n,k,p;
int co[200005],mo[200005];
int d[200005][55];long long ans;
void RMQ_init(){//ST表的创建模板
    for(int i=0;i<n;i++)
        d[i][0]=mo[i];
    for(int j=1;(1<<j)<=n;j++)
        for(int i=0;i+(1<<j)-1<n;i++){
            d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
        }
}
int RMQ_min(int L,int R){//区间最小值
    int k=0;
    while((1<<(k+1))<=R-L+1)
        k++;
    return min(d[L][k],d[R-(1<<k)+1][k]);     
}
 
void solve(int id){
    int pre=0,sum1=0,sum2=0;
    for(int i=0;i<n;i++)
        if(co[i]==id)
            sum1++;
    ans+=1ll*sum1*(sum1-1)/2;
    for(int i=0;i<n;i++)
        if(co[i]==id){
         
            if(!pre){
                pre=i;
                continue;
            }
            if(RMQ_min(pre,i)>p)
                sum2++;
            else{
                ans-=1ll*sum2*(sum2+1)/2;
                sum2=0;
            }
            pre=i;
        }
     
    if(sum2)
        ans-=1ll*sum2*(sum2+1)/2;
}
int main(){
    scanf("%d%d%d",&n,&k,&p);
    for(int i=0;i<n;i++)
        scanf("%d%d",&co[i],&mo[i]);
    RMQ_init();
    for(int i=0;i<k;i++){
        solve(i);
    }
    cout<<ans;
    return 0;
}

运用ST表的写法,不过网上还有其他更简单的写法,感兴趣可以去看看。

后记:

  这算是比较简单的一种数据吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值