前言:
比较简单的一个算法了,原理相当于是用二进制优化的区间dp了,用于求一个区间的最大或最小值。其实这类问题一般用线段树就可以直接解决,但如果查询次数过多的话可能会超时,这时就是ST表出场的时候了,因为ST表是现预处理的,所以查询的操作时间复杂度为o(1)。
正文:
习题:
Problem:A :st表模版
#include<bits/stdc++.h>
using namespace std;
int dp[1000005][20];
int main(){
int n,m,a;
cin>>n>>m;
for(int i=1;i<=n;i++){
scanf("%d",&a);
dp[i][0]=a;
}
int l=(int)(log(n)/log(2));
for(int j=1;j<=l;j++){//预处理,dp[i,j]相当于从第i个数到第i+2^j个数的最大值(必须先j后i,与区间dp类似)。
for(int i=1;i<=n;i++){
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);//状态转移方程(二分的方式)
}
}
int x,y,p;
for(int i=1;i<=m;i++){
scanf("%d%d",&x,&y);
p=(int)(log(y-x+1)/log(2));//p是最大能满足的2的幂次区间。
printf("%d\n",max(dp[x][p],dp[y-(1<<p)+1][p]));//需要分别从左右两侧查询来得到最优答案
}
return 0;
}
Problem:B 速算比赛-ST表:
#include<bits/stdc++.h>
using namespace std;
int dp[100005][40],d[100005][40];
int main(){
int n,k,a;
cin>>n>>k;
for(int i=1;i<=n;i++){
scanf("%d",&a);
dp[i][0]=a;d[i][0]=a;
}
int l=(int)(log(n)/log(2));
for(int j=1;j<=l;j++){
for(int i=1;i<=n-(1<<j)+1;i++){
dp[i][j]=max(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
}
}
int x,y,p;
for(int i=1;i+k-1<=n;i++){
x=i;y=i+k-1;
p=(int)(log(y-x+1)/log(2));
printf("%d %d\n",max(dp[x][p],dp[y-(1<<p)+1][p]),min(d[x][p],d[y-(1<<p)+1][p]));
}
return 0;
}
和第一题类似,只不过还要求最小值,再开一个数组并计算即可。
Problem:C 奶牛排队-ST
第二题的求差版本。
Problem:D 选择客栈-st
#include<bits/stdc++.h>
using namespace std;
int n,k,p;
int co[200005],mo[200005];
int d[200005][55];long long ans;
void RMQ_init(){//ST表的创建模板
for(int i=0;i<n;i++)
d[i][0]=mo[i];
for(int j=1;(1<<j)<=n;j++)
for(int i=0;i+(1<<j)-1<n;i++){
d[i][j]=min(d[i][j-1],d[i+(1<<(j-1))][j-1]);
}
}
int RMQ_min(int L,int R){//区间最小值
int k=0;
while((1<<(k+1))<=R-L+1)
k++;
return min(d[L][k],d[R-(1<<k)+1][k]);
}
void solve(int id){
int pre=0,sum1=0,sum2=0;
for(int i=0;i<n;i++)
if(co[i]==id)
sum1++;
ans+=1ll*sum1*(sum1-1)/2;
for(int i=0;i<n;i++)
if(co[i]==id){
if(!pre){
pre=i;
continue;
}
if(RMQ_min(pre,i)>p)
sum2++;
else{
ans-=1ll*sum2*(sum2+1)/2;
sum2=0;
}
pre=i;
}
if(sum2)
ans-=1ll*sum2*(sum2+1)/2;
}
int main(){
scanf("%d%d%d",&n,&k,&p);
for(int i=0;i<n;i++)
scanf("%d%d",&co[i],&mo[i]);
RMQ_init();
for(int i=0;i<k;i++){
solve(i);
}
cout<<ans;
return 0;
}
运用ST表的写法,不过网上还有其他更简单的写法,感兴趣可以去看看。
后记:
这算是比较简单的一种数据吧。